• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Chemical and Petroleum Engineering
    • Volume 52, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Chemical and Petroleum Engineering
    • Volume 52, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Semi-Analytical Method for History Matching and Improving Geological Models of Layered Reservoirs: CGM Analytical Method

    (ندگان)پدیدآور
    Ali, JagarStephen, Karl
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    4.104 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    History matching is used to constrain flow simulations and reduce uncertainty in forecasts. In this work, we revisited some fundamental engineering tools for predicting waterflooding behavior to better understand the flaws in our simulation and thus find some models which are more accurate with better matching. The Craig-Geffen-Morse (CGM) analytical method was used to predict recovery performance calculations and it was simple enough which can be applied in a spreadsheet. In this study, the analytical approach of history matching was applied to a layered reservoir from a shallow marine deposit which was composed of different facies includes lower shoreface facies (LSF), middle shoreface facies (MSF) and upper shoreface facies (USF). Truncated Gaussian Simulation (TGS) is often used to stochastically distribute the facies in the geological model around a deterministic mean representation. The actual distribution is often hard to determine. Starting with the deterministic element of the facies distributions, corrections were made by matching the CGM method predictions to historical data. These corrections were amalgamated in the model and produced a much better history match. Further, the modifications were used to condition the stochastic simulator to provide a geologically more robust model that also matched history. The results showed that the variation of the total field production rate (FPR) between the deterministic model and history data was reduced by about 19.8% (from 21.52% to 1.73%) after applying history match analytically.
    کلید واژگان
    Craig-Geffen-Morse analytical method
    History Matching
    Improving geological models
    Waterflood performance
    Uncertainty reduction

    شماره نشریه
    1
    تاریخ نشر
    2018-06-01
    1397-03-11
    ناشر
    University of Tehran
    سازمان پدید آورنده
    Department of Petroleum Engineering, Faculty of Engineering, Soran University, Soran, Iraq
    Institute of Petroleum Engineering, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, UK

    شاپا
    2423-673X
    2423-6721
    URI
    https://dx.doi.org/10.22059/jchpe.2018.252190.1220
    https://jchpe.ut.ac.ir/article_66105.html
    https://iranjournals.nlai.ir/handle/123456789/284331

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب