On the characteristic of projectively invariant Pseudo-distance on Finsler spaces
(ندگان)پدیدآور
Bidabad, B.Sepasi, M.نوع مدرک
TextRegular Paper
زبان مدرک
Englishچکیده
A projective parameter of a geodesic as solution of certain ODE is defined to be a parameter which is invariant under projective change of metric. Using projective parameter and Poincaré metric, an intrinsic projectively invariant pseudo-distance can be constructed. In the present work, solutions of the above ODE are characterized with respect to the sign of parallel Ricci tensor on a Finsler space. Moreover, the Ricci tensor is used to define a Finsler structure and it is shown that, the pseudo-distance is trivial on complete Finsler spaces of positive semi-definite Ricci tensor and it is a distance on a Finsler space of parallel negative definite Ricci tensor.
کلید واژگان
Finsler metricSchwarzian derivative
Ricci tensor
projective parameter
pseudo-distance
شماره نشریه
2تاریخ نشر
2015-06-011394-03-11
ناشر
Springerسازمان پدید آورنده
Faculty of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave., 15914 Tehran, IranFaculty of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave., 15914 Tehran, Iran




