• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Computing and Security
    • Volume 1, Issue 3
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Computing and Security
    • Volume 1, Issue 3
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Semantic Segmentation of Aerial Images Using Fusion of Color and Texture Features

    (ندگان)پدیدآور
    Rezaeian, MahdieAmirfattahi, RasoulSadri, Saeid
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    966.7کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    This paper presents a semantic method for aerial image segmentation. Multi-class aerial images are often featured with large intra-class variations and inter-class similarities. Furthermore, shadows, reflections and changes in viewpoint, high and varying altitude and variability of natural scene pose serious problems for simultaneous segmentation. The main purpose of segmentation of aerial images is to make subsequent recognition phase straightforward. Present algorithm combines two challenging tasks of segmentation and classification in a manner that no extra recognition phase is needed. This algorithm is supposed to be part of a system which will be developed to automatically locate the appropriate site for Unmanned Aerial Vehicle (UAV) landing. With this perspective, we focused on segregating natural and man-made areas in aerial images. We compared different classifiers and explored the best set of features for this task in an experimental manner. In addition, a certainty based method has been used for integrating color and texture descriptors in a more efficient way. The experimental results over a dataset comprised of 25 high-resolution images show the overall binary segmentation accuracy rate of 91.34%.
    کلید واژگان
    Aerial Images
    Semantic Segmentation
    Classification
    Local Binary Patterns
    Feature Fusion
    artificial neural network
    Support Vector Machine
    Random Forest

    شماره نشریه
    3
    تاریخ نشر
    2014-07-01
    1393-04-10
    ناشر
    University of Isfahan & Iranian Society of Cryptology
    سازمان پدید آورنده
    Isfahan University of Technology
    Isfahan University of Technology
    Isfahan University of Technology

    شاپا
    2322-4460
    2383-0417
    URI
    http://jcomsec.ui.ac.ir/article_21869.html
    https://iranjournals.nlai.ir/handle/123456789/283138

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب