• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Computing and Security
    • Volume 7, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Computing and Security
    • Volume 7, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Mining Association Rules from Semantic Web Data without User Intervention

    (ندگان)پدیدآور
    Ramezani, RezaNematbakhsh, Mohammad AliSaraee, Mohamad
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    932.4کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    With the introduction and standardization of the semantic web as the third generation of the web, this technology has attracted and received more human attention than ever. Thus, the amount of semantic web data is continuously growing, which makes them a rich source of useful data for data mining techniques. Semantic web data have some complexities, such as the heterogeneous structure of data, the lack of well-defined transactions, and the existence of typed relations between items. In this paper, a new technique named SWApriori is presented, which by using both entities and relations in the extraction of frequent itemsets, generates a new class of association rules (ARs) from semantic web data. The proposed technique by considering the complex heterogeneous nature of semantic web data, without any need to a domain expert, and without any data conversion to transactional data format extracts ARs from semantic web data directly. For evaluation, the proposed technique is applied to Factbook and DBPedia datasets. The experimental results demonstrate the ability of the proposed technique in extracting relational ARs from semantic web data by considering the mentioned challenges. Supplementary experiments show that the proposed technique can extract interesting patterns that are not discoverable by state-of-the-art association rule mining techniques.
    کلید واژگان
    Semantic Web
    Association Rules
    Data Mining
    SWApriori
    Data Mining

    شماره نشریه
    1
    تاریخ نشر
    2020-01-01
    1398-10-11
    ناشر
    University of Isfahan & Iranian Society of Cryptology
    سازمان پدید آورنده
    Department of Software Engineering, Faculty of Computer Engineering, University of Isfahan, Iran.
    Department of Software Engineering, Faculty of Computer Engineering, University of Isfahan, Iran.
    School of Computing, Science and Engineering, University of Salford, Manchester, UK.

    شاپا
    2322-4460
    2383-0417
    URI
    https://dx.doi.org/10.22108/jcs.2020.121763.1046
    http://jcomsec.ui.ac.ir/article_24653.html
    https://iranjournals.nlai.ir/handle/123456789/283075

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب