Chain least squares method and ill-posed problems
(ندگان)پدیدآور
Babolian, E.Abdollahi, A.Shahmorad, S.نوع مدرک
TextRegular Paper
زبان مدرک
Englishچکیده
The main purpose of this article is to increase the efficiency of the least squares method in numerical solution of ill-posed functional and physical equations. Determining the least squares of a given function in an arbitrary set is often an ill-posed problem. In this article, by defining artificial constraint and using Lagrange multipliers method, the attempt is to turn -dimensional least squares problems into ones, in a way that the condition number of the corresponding system with -dimensional problem will be low. At first, the new method is introduced for and -term basis, then the presented method is generalized for -term basis. Finally, the numerical solution of some ill-posed problems like Fredholm integral equations of the first kind and singularly perturbed linear Fredholm integral equations of the second kind are approximated by chain least squares method. Numerical comparisons indicate that the chain least squares method yields accurate and stable approximations in many cases.
کلید واژگان
Lagrange multipliers methodChain least squares
ill-posed problem
Integral equations
شماره نشریه
2تاریخ نشر
2014-05-011393-02-11
ناشر
Springerسازمان پدید آورنده
Department of Mathematics, Science and Research Branch, Islamic Azad University, P. O. Box 775-14515, Tehran, IranDepartment of Mathematics, Science and Research Branch, Islamic Azad University, P. O. Box 775-14515, Tehran, Iran
Faculty of Mathematical Science, University of Tabriz, P. O. Box 51664-16471, Tabriz, Iran




