• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات فارسی
    • فیزیک زمین و فضا
    • دوره 44, شماره 4
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات فارسی
    • فیزیک زمین و فضا
    • دوره 44, شماره 4
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Prediction of monthly rainfall using artificial neural network mixture approach, Case Study: Torbat-e Heydariyeh

    (ندگان)پدیدآور
    Zabbah, ImanRoshani, Ali RezaKhafage, Amin
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    671.8کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    زبان مدرک
    فارسی
    نمایش کامل رکورد
    چکیده
    Rainfall is one of the most important elements of water cycle used in evaluating climate conditions of each region. Long-term forecast of rainfall for arid and semi-arid regions is very important for managing and planning of water resources. To forecast appropriately, accurate data regarding humidity, temperature, pressure, wind speed etc. is required.This article is analytical and its database includes 7336 records situated in 11 features from daily brainstorm data within a twenty year period. The samples were selected based on a case study in Torbat-e Heydariyeh. 70% were chosen for learning and 30% were chosen for taking tests. From 7181 available data, 75% and 25% were used for training and evaluating, respectively. This research studied the performance of different neural networks in order to predict precipitation and then presented an algorithm for combining neural networks with linear and nonlinear methods. After modeling and comparing their results using neural networks, the root mean square error was recorded for each method. In the first modeling, the artificial neural network error was 0.05, in the second modeling, linear combination of neural networks error was 0.07, and in the third model, nonlinear combination neural networks error was 0.001. Reducing the error of forecasting precipitation has always been one of the goals of the researchers. This study, with the forecast of precipitation by neural networks, suggested that the use of a more robust method called a nonlinear combination neural network can lead to improve men is in for cast diagnostic accuracy.
    کلید واژگان
    Monthly rainfall
    Artificial Neural Networks
    experts' mixture
    Torbat-e Heydariyeh Precipitation
    هواشناسی

    شماره نشریه
    4
    تاریخ نشر
    2018-12-22
    1397-10-01
    ناشر
    موسسه ژئوفیزیک دانشگاه تهران
    Institute of Geophysics, University of Tehran
    سازمان پدید آورنده
    Lecturer, Department of Computer, Torbat-e Heydariyeh branch, Islamic Azad University, Torbat-e Heydariyeh, Iran
    Assistant Professor, Department of Water Engineering, Torbat-e Heydariyeh branch, Islamic Azad University, Torbat-e Heydariyeh, Iran
    M.Sc. Graduated, Department of Computer, Torbat-e Heydariyeh branch, Islamic Azad University, Torbat-e Heydariyeh, Iran

    شاپا
    2538-371X
    2538-3906
    URI
    https://dx.doi.org/10.22059/jesphys.2018.244511.1006941
    https://jesphys.ut.ac.ir/article_67737.html
    https://iranjournals.nlai.ir/handle/123456789/273363

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب