• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Food Biosciences and Technology
    • Volume 09, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Food Biosciences and Technology
    • Volume 09, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Prediction of Methyl Salicylate Effects on Pomegranate Fruit Quality and Chilling Injuries using Adaptive Neuro-Fuzzy Inference System and Artificial Neural Network

    (ندگان)پدیدآور
    Sayyari, M.Salehi, F.Valero, D.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    430.1کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Adaptive neuro-fuzzy inference system (ANFIS) and genetic algorithm–artificial neural network (GA-ANN) were investigated for predicting methyl salicylate (MeSA) effects on chilling injuries and quality changes of pomegranate fruits during storage. Fruits were treated with MeSA at three concentrations(0, 0.01 and 0.1 mM) and stored under chilling temperature for 84 days. ANFIS and GA-ANN models were used to predict the effect of MeSA application and storage time (0, 14, 28, 42, 56, 70 and 84 days) on chilling injuries, quality parameters and physiological changes of pomegranate during storage. The GA-ANN and ANFIS were fed with 2 inputs of MeSA and time. The developed GA–ANN, which included 20 hidden neurons, could predict physiological changes and quality parameters of pomegranate fruit (weight loss, pH, titratable acidity, chilling injury index, ion leakage, ethylene, respiration, polyphenols, anthocyanins, total antioxidant activity) with average correlation coefficient of 0.89. The overall agreement between ANFIS predictions and experimental data was also significant (r=0.87).In addition, sensitivity analysis results showed that storage time was the most sensitive factor for prediction of MeSA effects on pomegranate fruit quality attributes during postharvest storage.
    کلید واژگان
    Chilling Injury
    Fuzzy Inference
    Genetic algorithm
    Neural Network
    Sensitivity analysis

    شماره نشریه
    2
    تاریخ نشر
    2019-07-01
    1398-04-10
    ناشر
    Tehran Science and Research Branch, Islamic Azad University
    سازمان پدید آورنده
    Associate Professor of the Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran.
    Assistant Professor of the Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran.
    Professor, EPSO, University Miguel Hernández, Ctra. Beniel km. 3.2, 03312 Orihuela, Alicante, Spain.

    شاپا
    2228-7086
    URI
    http://jfbt.srbiau.ac.ir/article_14378.html
    https://iranjournals.nlai.ir/handle/123456789/270088

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب