پیش بینی نرخ ارز در بازار سرمایه با استفاده از مدل های میانگین متحرک خود رگرسیون انباشته و شبکه عصبی )مطالعه موردی: دلار استرالیا، دلار کانادا، ین ژاپن و پوند انگلستان(
(ندگان)پدیدآور
احسانی فر, محمداحتشام راثی, رضانوع مدرک
Textمقاله پژوهشی
زبان مدرک
فارسیچکیده
سیاست گذاران پولی به منظور جلوگیری از زیان های ناشی از تغییرات از هم گسیخته نرخ ارز، همواره درصددیافتن روشی مناسب برای پیش بینی نرخ ارز بوده اند. لیکن ویژگیهای چند بعدی نرخ ارز باعث رفتار پیچیده وغیرخطی آن شده است. یکی از روش های سنتی پی بینی، تجزیه و تحلیل سری زمانی است که بر دو فرض ایستاییو خطی بودن بنیان نهاده شده است. در مورد عملکرد این مدل های سنتی بعضاٌ تردیدهای ایجاد شده است. یکی ازروش های جایگزین، شبکه های عصبی مصنوعی است که در برخی از موارد توانایی بالقوه خوبی برای پیش بینیسریهای زمانی از خود نشان دادهاند. در این مقاله، پس از مرور پژوهش های انجام شده در مورد توانایی پیش بینیمدل های خود توضیح جمعی میانگین متحرک 1 و شبکه های عصبی مصنوعی 2 ، به مقایسهی این دو روش برای پیشبینی نرخ روزانه ارز در 2112 پرداخته شده است. نتایج /1/ 1991 لغایت 1 /1/ دوره ی از سال 1 تحقیق نشان دادهاست که روش شبکه های عصبی تخمینهای بهتری نسبت به روش میانگین متحرک خود رگرسیون انباشته ارائهمیکند . در این پژوهش، از ابزارهای محاسباتی نرم افزار STATGRAPHICSو MATLABو دادههای اقتصادیکشورهای استرالیا، کانادا، ژاپن و انگلستان و نرخ ارز 3 آن کشورها نسبت به دلار آمریکا استفاده شده است.
کلید واژگان
نرخ ارزبازار سرمایه
پیش بینی
شبکه های عصبی مصنوعی
خود رگرسیون میانگین متحرک انباشته
شماره نشریه
27تاریخ نشر
2015-09-231394-07-01
ناشر
دانشگاه آزاد اسلامی واحد علوم وتحقیقاتسازمان پدید آورنده
استادیار، دانشگاه آزاد اسلامی، واحد اراک، گروه مهندسی صنایع، اراک، ایران.استادیار، دانشگاه آزاد اسلامی، واحد قزوین، گروه مدیریت، قزوین، ایران.
شاپا
2251-68592383-2789




