• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Biomedical Physics and Engineering
    • Volume 9, Issue 6
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Biomedical Physics and Engineering
    • Volume 9, Issue 6
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Use of Artificial Neural Networks and PCA to Predict Results of Infertility Treatment in the ICSI Method

    (ندگان)پدیدآور
    Mostaar, ASattari, M RHosseini, SDeevband, M R
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    889.8کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Research
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Background: Intracytoplasmic sperm injection (ICSI) or microinjection is one of the most commonly used assisted reproductive technologies (ART) in the treatment of patients with infertility problems. At each stage of this treatment cycle, many dependent and independent variables may affect the results, according to which, estimating the accuracy of fertility rate for physicians will be difficult.Objective: This study aims to evaluate the efficiency of artificial neural networks (ANN) and principal component analysis (PCA) to predict results of infertility treatment in the ICSI method.Material and Methods: In the present research that is an analytical study, multilayer perceptron (MLP) artificial neural networks were designed and evaluated to predict results of infertility treatment using the ICSI method. In addition, the PCA method was used before the process of training the neural network for extracting information from data and improving the efficiency of generated models. The network has 11 to 17 inputs and 2 outputs. Results: The area under ROC curve (AUC) values were derived from modeling the results of the ICSI technique for the test data and the total data. The AUC for total data vary from 0.7670 to 0.9796 for two neurons, 0.9394 to 0.9990 for three neurons and 0.9540 to 0.9906 for four neurons in hidden layers.Conclusion: The proposed MLP neural network can model the specialist performance in predicting treatment results with a high degree of accuracy and reliability.
    کلید واژگان
    Neural networks
    Principal Component Analysis
    Fertility
    Intracytoplasmic Sperm Injection

    شماره نشریه
    6
    تاریخ نشر
    2019-12-01
    1398-09-10
    ناشر
    Shiraz University of Medical Sciences
    سازمان پدید آورنده
    PhD, Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
    MSc, Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
    PhD, Preventive Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
    PhD, Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

    شاپا
    2251-7200
    URI
    https://dx.doi.org/10.31661/jbpe.v0i0.1187
    https://jbpe.sums.ac.ir/article_45890.html
    https://iranjournals.nlai.ir/handle/123456789/26552

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب