• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Industrial Engineering and Management Studies
    • Volume 3, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Industrial Engineering and Management Studies
    • Volume 3, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Improving the performance of financial forecasting using different combination architectures of ARIMA and ANN models

    (ندگان)پدیدآور
    Hajirahimi, Z.Khashei, M.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    5.443 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Despite several individual forecasting models that have been proposed in the literature, accurate forecasting is yet one of the major challenging problems facing decision makers in various fields, especially financial markets. This is the main reason that numerous researchers have been devoted to develop strategies to improve forecasting accuracy. One of the most well established and widely used solutions is hybrid methodologies that combine linear statistical and nonlinear intelligent models. The main idea of these methods is based on this fact that real time series often contain complex patterns. So single models are inadequate to model and process all kinds of existing relationships in the data, comprehensively. In this paper, the auto regressive integrated moving average (ARIMA) and artificial neural networks (ANNs), which respectively are the most important linear statistical and nonlinear intelligent models, are selected to construct a set of hybrid models. In this way, three combination architectures of the ARIMA and ANN models are presented in order to lift their limitations and improve forecasting accuracy in financial markets. Empirical results of forecasting the benchmark data sets including the opening of the Dow Jones Industrial Average Index (DJIAI), closing of the Shenzhen Integrated Index (SZII) and closing of standard and poor's (S&P 500) indicates that hybrid models can generate superior results in comparison with both ARIMA and ANN models in forecasting stock prices.
    کلید واژگان
    Combination Architecture
    Hybrid Model
    Artificial Neural Networks (ANNs). Auto-regressive Integrated Moving Average (ARIMA)
    Forecasting Stock Price

    شماره نشریه
    2
    تاریخ نشر
    2016-12-01
    1395-09-11
    ناشر
    Iran Center for Management Studies
    سازمان پدید آورنده
    Department of Industrial and systems Engineering, Isfahan University of Technology, Isfahan, Iran.
    Department of Industrial and systems Engineering, Isfahan University of Technology, Isfahan, Iran.

    شاپا
    2476-308X
    2476-3098
    URI
    http://jiems.icms.ac.ir/article_48545.html
    https://iranjournals.nlai.ir/handle/123456789/257806

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب