• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Advances in Industrial Engineering
    • Volume 48, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Advances in Industrial Engineering
    • Volume 48, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Performance Evaluation of Mazandaran Water and Wastewater by Data Envelopment Analysis and Artificial Neural Network

    (ندگان)پدیدآور
    Rezaeian, JavadAsgarinezhad, Abbas
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    684.4کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    In this study, Mazandaran Water and Wastewater Company' performance is evaluated by using an input-oriented data envelopment analysis. As a principle, the performance of each organizational unit or organization should be measured as far as possible and what cannot be evaluated cannot be well governed. One method of evaluating the performance of units is data envelopment analysis method. One of the main problems of using data envelopment analysis is its low-resolution which it is due to the low number of decision making units to compare with the number of inputs and outputs. Given to the calculated efficiency by the DEA model (CCR input-oriented) for 16 decision making unit for years 1389 and 1390 there is the problem of existence of several efficient areas, which in the first step was used from Anderson and Peterson (AP) technique to cover this weaknesses. Since the AP technique involves solving a linear programming model for each of the DMUs. Therefore, by increasing the dimension of issue, efficiency assessment will be time consuming process. So the idea of using a neural network with efficiency data of data envelopment analysis is proposed as an alternative approach. Analytical results of calculated efficiencies of DMUs by the combination method of Neuro-DEA indicate the high power of neural network in resolution of decision-making areas in terms of efficiency.
    کلید واژگان
    Input-oriented CCR model
    Anderson and Peterson model (AP)
    Data Envelopment Analysis
    Artificial neural networks (ANNs)

    شماره نشریه
    2
    تاریخ نشر
    2014-10-01
    1393-07-09
    ناشر
    University of Tehran
    سازمان پدید آورنده
    Faculty member of Mazandaran University of Science and Technology, I.R. Iran
    Msc student of Industrial Management Institute, I.R. Iran

    شاپا
    2423-6896
    2423-6888
    URI
    https://dx.doi.org/10.22059/jieng.2014.52914
    https://jieng.ut.ac.ir/article_52914.html
    https://iranjournals.nlai.ir/handle/123456789/257699

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب