• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Advances in Industrial Engineering
    • Volume 50, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Advances in Industrial Engineering
    • Volume 50, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Prediction of Acute Heart Attack using Logistic Regression (Case Study: A Hospital in Iran)

    (ندگان)پدیدآور
    Neshati Tanha, ArezooSoleimani, Paria
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    408.2کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Acute myocardial infarction is the most important reason of mortality in Iran. More than half of these deaths occur without the patient even reaching to a hospital. There is the evidence that patients with better knowledge of the symptoms of MI will seek help earlier. The purpose of this study is to determine how well a predictive model will perform based solely upon patient-reportable clinical history factors, without using diagnostic tests or physical exam findings. We use 28 patient-reportable history factors that are included as potential covariates in our models. Using a derivation data set of 663 patients, we build three logistic regression models and one decision tree model to estimate the likelihood of acute coronary syndrome based upon patient-reportable clinical history factors only. The best performing logistic regression model have a C-index of 0.955 and with an accuracy of 94.9%. The variables, severe chest pain, back pain, cold sweats, shortness of breath, nausea and vomiting is selected as the main features. A decision tree model has a C-index of 0.938. The variables, shortness of breath, palpitations, edema, sweats, left chest pain, age, severe chest pain and nausea are selected as the main features. This model can have important utility in the applications outside of a hospital setting when objective diagnostic test information is not yet available. Given the very high mortality from MI in the Iran, even a small reduction in median time from onset of symptoms to treatment can translate into a substantial number of lives saved.
    کلید واژگان
    Acute coronary syndrome
    Coronary Artery Disease
    Decision Tree
    Logistic regression
    prediction
    Quality Engineeing

    شماره نشریه
    1
    تاریخ نشر
    2016-04-01
    1395-01-13
    ناشر
    University of Tehran
    سازمان پدید آورنده
    Department of Industrial Engineering, South Tehran Branch,Islamic Azad University, Tehran, Iran
    Department of Industrial Engineering, South Tehran Branch,Islamic Azad University, Tehran, Iran

    شاپا
    2423-6896
    2423-6888
    URI
    https://dx.doi.org/10.22059/jieng.2016.59436
    https://jieng.ut.ac.ir/article_59436.html
    https://iranjournals.nlai.ir/handle/123456789/257553

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب