• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Advances in Industrial Engineering
    • Volume 48, Special Issue
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Advances in Industrial Engineering
    • Volume 48, Special Issue
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Forecasting Effects of Scenarios of Subsides Removal on Residential Electricity Consumption by Artificial Neural Networks

    (ندگان)پدیدآور
    Barzinpour, F.Karimi, S.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    498.1کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    The increasing consumption of electricity in Iran is one of the greatest concerns of the government. Using the subsidy-based pricing system is one of the main reasons of improper pattern of residential electricity consumption that has imposed great cost over the government due to the increased number of consumers and their improper way of consuming electricity. In this paper, we analyze the factors that affect residential electricity demand using artificial neural network (ANN) and predict the amount of electricity consumption in 2006 (the end of the year in which subsides are being removed) by definition of five different price scenarios. The per-capita residential electricity consumption is considered as a dependent variable of the model .Electricity price, GDP per capita, macroeconomic fluctuations and a variable representing weather temperatures are used as explanatory factors. The proposed model has a good explaining capability (R=0.996) and with predicting independent variables up to 2016, the dependent variable were predicted using procedures like time series and ARIMA. The achieved results show that the price factors have limited role in defining the pattern of residential electricity consumption. So small changes in electricity price will not reduce the electricity consumption and committing scenarios with gradual changes in price will not lead to the reduction of electricity consumption. Therefore, it is necessary for the government to commit scenarios with significant increase of prices in order to correct the pattern of residential electricity consumption; otherwise, the electricity demand will increase uncontrollably due to the increasing population and consumption.
    کلید واژگان
    Scenario building
    Artificial Neural Network
    forecasting
    subsidies
    electricity consumption

    تاریخ نشر
    2014-09-01
    1393-06-10
    ناشر
    University of Tehran

    شاپا
    2423-6896
    2423-6888
    URI
    https://dx.doi.org/10.22059/jieng.2014.51787
    https://jieng.ut.ac.ir/article_51787.html
    https://iranjournals.nlai.ir/handle/123456789/257527

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب