نمایش مختصر رکورد

dc.contributor.authorHasani Doughabadi, Marziyehen_US
dc.contributor.authorBahrami, Hosseinen_US
dc.contributor.authorKolahan, Farhaden_US
dc.date.accessioned1399-07-09T04:14:29Zfa_IR
dc.date.accessioned2020-09-30T04:14:29Z
dc.date.available1399-07-09T04:14:29Zfa_IR
dc.date.available2020-09-30T04:14:29Z
dc.date.issued2011-12-01en_US
dc.date.issued1390-09-10fa_IR
dc.identifier.citationHasani Doughabadi, Marziyeh, Bahrami, Hossein, Kolahan, Farhad. (2011). Evaluating the Effects of Parameters Setting on the Performance of Genetic Algorithm Using Regression Modeling and Statistical Analysis. Advances in Industrial Engineering, 45, 61-68.en_US
dc.identifier.issn2423-6896
dc.identifier.issn2423-6888
dc.identifier.urihttps://jieng.ut.ac.ir/article_23326.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/257483
dc.description.abstractAmong various heuristics techniques, Genetic algorithm (GA) is one of the most widely used techniques which has successfully been applied on a variety of complex combinatorial problems. The performance of GA largely depends on the proper selection of its parameters values; including crossover mechanism, probability of crossover, population size and mutation rate and selection percent. In this paper, based on Design of Experiments (DOE) approach and regression modeling, the effects of tuning parameters on the performance of genetic algorithm have been evaluated. As an example, GA is applied to find a shortest distance for a well-known travelling salesman problem with 48 cities. The proposed approach can readily be implemented to any other optimization problem. To develop mathematical models, computational experiments have been carried out using a 4-factor 5-level Central Composite Design (CCD) matrix. Three types of regression functions models have been fitted to relate GA variables to its performance characteristic. Then, statistical analyses are performed to determine the best and most fitted model. Analysis of Variance (ANOVA) results indicate that the second order function is the best model that can properly represent the relationship between GA important variables and its performance measure (solution quality).en_US
dc.format.extent125
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherUniversity of Tehranen_US
dc.relation.ispartofAdvances in Industrial Engineeringen_US
dc.subjectANOVAen_US
dc.subjectDesign of experimentsen_US
dc.subjectGenetic algorithmen_US
dc.subjectoptimizationen_US
dc.subjectRegression modelingen_US
dc.titleEvaluating the Effects of Parameters Setting on the Performance of Genetic Algorithm Using Regression Modeling and Statistical Analysisen_US
dc.typeTexten_US
dc.citation.volume45
dc.citation.spage61
dc.citation.epage68


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد