• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Advances in Industrial Engineering
    • Volume 45, Special Issue
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Advances in Industrial Engineering
    • Volume 45, Special Issue
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Evaluating the Effects of Parameters Setting on the Performance of Genetic Algorithm Using Regression Modeling and Statistical Analysis

    (ندگان)پدیدآور
    Hasani Doughabadi, MarziyehBahrami, HosseinKolahan, Farhad
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    125.2کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Among various heuristics techniques, Genetic algorithm (GA) is one of the most widely used techniques which has successfully been applied on a variety of complex combinatorial problems. The performance of GA largely depends on the proper selection of its parameters values; including crossover mechanism, probability of crossover, population size and mutation rate and selection percent. In this paper, based on Design of Experiments (DOE) approach and regression modeling, the effects of tuning parameters on the performance of genetic algorithm have been evaluated. As an example, GA is applied to find a shortest distance for a well-known travelling salesman problem with 48 cities. The proposed approach can readily be implemented to any other optimization problem. To develop mathematical models, computational experiments have been carried out using a 4-factor 5-level Central Composite Design (CCD) matrix. Three types of regression functions models have been fitted to relate GA variables to its performance characteristic. Then, statistical analyses are performed to determine the best and most fitted model. Analysis of Variance (ANOVA) results indicate that the second order function is the best model that can properly represent the relationship between GA important variables and its performance measure (solution quality).
    کلید واژگان
    ANOVA
    Design of experiments
    Genetic algorithm
    optimization
    Regression modeling

    تاریخ نشر
    2011-12-01
    1390-09-10
    ناشر
    University of Tehran

    شاپا
    2423-6896
    2423-6888
    URI
    https://jieng.ut.ac.ir/article_23326.html
    https://iranjournals.nlai.ir/handle/123456789/257483

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب