• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Industrial and Systems Engineering
    • Volume 4, Issue 4
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Industrial and Systems Engineering
    • Volume 4, Issue 4
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Which Methodology is Better for Combining Linear and Nonlinear Models for Time Series Forecasting?

    (ندگان)پدیدآور
    Khashei, MehdiBijari, Mehdi
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    480.3کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Both theoretical and empirical findings have suggested that combining different models can be an effective way to improve the predictive performance of each individual model. It is especially occurred when the models in the ensemble are quite different. Hybrid techniques that decompose a time series into its linear and nonlinear components are one of the most important kinds of the hybrid models for time series forecasting. Several researches in the literature have been shown that these models can outperform single models. In this paper, the predictive capabilities of three different models in which the autoregressive integrated moving average (ARIMA) as linear model is combined to the multilayer perceptron (MLP) as nonlinear model, are compared together for time series forecasting. These models are including the Zhang's hybrid ANNs/ARIMA, artificial neural network (p,d,q), and generalized hybrid ANNs/ARIMA models. The empirical results with three well-known real data sets indicate that all of these methodologies can be effective ways to improve forecasting accuracy achieved by either of components used separately. However, the generalized hybrid ANNs/ARIMA model is more accurate and performs significantly better than other aforementioned models.
    کلید واژگان
    Artificial neural networks (ANNs)
    Auto-Regressive Integrated Moving Average (ARIMA)
    Time series forecasting
    Hybrid linear/nonlinear models
    Artificial Intelligence
    Forecasting and Time Series

    شماره نشریه
    4
    تاریخ نشر
    2011-02-01
    1389-11-12
    ناشر
    Iranian Institute of Industrial Engineering
    سازمان پدید آورنده
    Department of Industrial and Systems Engineering, Isfahan University of Technology, Isfahan, Iran
    Department of Industrial and Systems Engineering, Isfahan University of Technology, Isfahan, Iran

    شاپا
    1735-8272
    URI
    http://www.jise.ir/article_4037.html
    https://iranjournals.nlai.ir/handle/123456789/252256

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب