• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Information Technology Management
    • Volume 10, Issue 4
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Information Technology Management
    • Volume 10, Issue 4
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The Effect of Transitive Closure on the Calibration of Logistic Regression for Entity Resolution

    (ندگان)پدیدآور
    Ye, YumengTalburt, John
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    922.7کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    This paper describes a series of experiments in using logistic regression machine learning as a method for entity resolution. From these experiments the authors concluded that when a supervised ML algorithm is trained to classify a pair of entity references as linked or not linked pair, the evaluation of the model's performance should take into account the transitive closure of its pairwise linking decisions, not just the pairwise classifications alone. Part of the problem is that the measures of precision and recall as calculated in data mining classification algorithms such as logistic regression is different from applying these measures to entity resolution (ER) results.. As a classifier, logistic regression precision and recall measure the algorithm's pairwise decision performance. When applied to ER, precision and recall measure how accurately the set of input references were partitioned into subsets (clusters) referencing the same entity. When applied to datasets containing more than two references, ER is a two-step process. Step One is to classify pairs of records as linked or not linked. Step Two applies transitive closure to these linked pairs to find the maximally connected subsets (clusters) of equivalent references. The precision and recall of the final ER result will generally be different from the precision and recall measures of the pairwise classifier used to power the ER process. The experiments described in the paper were performed using a well-tested set of synthetic customer data for which the correct linking is known. The best F-measure of precision and recall for the final ER result was obtained by substantially increasing the threshold of the logistic regression pairwise classifier.
    کلید واژگان
    Entity resolution
    Record linking
    Machine learning
    Logistic regression
    Transitive closure
    Information Management

    شماره نشریه
    4
    تاریخ نشر
    2018-12-01
    1397-09-10
    ناشر
    Faculty of Management, University of Tehran
    سازمان پدید آورنده
    MSC, Department of Information Quality Program, University of Arkansas at Little Rock, Arkansas, USA.
    Prof., Department of Information Science, University of Arkansas at Little Rock, Arkansas, USA.

    شاپا
    2008-5893
    2423-5059
    URI
    https://dx.doi.org/10.22059/jitm.2019.270013.2324
    https://jitm.ut.ac.ir/article_72757.html
    https://iranjournals.nlai.ir/handle/123456789/250487

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب