• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Information Technology Management
    • Volume 9, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Information Technology Management
    • Volume 9, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A New Similarity Method to Optimize Business in the Online Stores Using the Rating Time Technology

    (ندگان)پدیدآور
    Zaghari, NayerehZamani, Ardeshir
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    991.0کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    These days, Emergence of e-commerce web sites is one of the important consequences of the Internet in modern times, but products data is growing exponentially. In such environment, customers face a problem in finding optimized information among huge data bases about the items or desired products. In order to assist buyers, large e-commerce companies are planning to introduce their own recommender systems to help their customers in making a better choice among the items. Due to high percentage error , a basic method to build such systems is not usually being applied. In this essay, two methods have been suggested in order to improve recommendations in recommender systems. Collaborative filtering method is one of the most successful methods used in the system, but using this method that it has common problem the increasing number of users and products, therefore system do not inability to request the requirement of cold start and data sparsity. Two methods have been suggested in order to improve recommendations in recommender systems. To resolve this problem, a new method has been introduced in which by integrating  rating time by Pearson also combining semantic technology with social networks offers a solution to reduce issues such as "cold start" and generally "data sparsity" in recommender systems. The result of simulating showed that the proposed approach provided better performance and more accurate predictions in addition of more consistent with user preferences.
    کلید واژگان
    Data sparsity
    Internet store
    Recommender systems
    Users rating time
    Cognitive Aspects of Artificial Intelligence (AI)

    شماره نشریه
    1
    تاریخ نشر
    2017-03-01
    1395-12-11
    ناشر
    Faculty of Management, University of Tehran
    سازمان پدید آورنده
    Ph.D. Candidate in Computer Engineering, Azad University, Tehran, Iran
    Ph.D. Candidate in Business Management, Tehran University, Tehran, Iran

    شاپا
    2008-5893
    2423-5059
    URI
    https://dx.doi.org/10.22059/jitm.2017.59844
    https://jitm.ut.ac.ir/article_59844.html
    https://iranjournals.nlai.ir/handle/123456789/250465

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب