• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Environmental Research
    • Volume 7, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Environmental Research
    • Volume 7, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Forecasting Municipal Solid waste Generation by Hybrid Support Vector Machine and Partial Least Square Model

    (ندگان)پدیدآور
    Abbasi, M.Abduli, M.A.Omidvar, B.Baghvand, A.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    368.0کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Forecasting of municipal waste generation is a critical challenge for decision making and planning,because proper planning and operation of a solid waste management system is intensively affected by municipal solid waste (MSW) streams analysis and accurate predictions of solid waste quantities generated. Due to dynamic and complexity of solid waste management system, models by artificial intelligence can be a useful solution of this problem. In this paper, a novel method of Forecasting MSW generation has been proposed. Here, support vector machine (SVM) as an intelligence tool combined with partial least square (PLS) as a feature selection tool was used to weekly prediction of MSW generated in Tehran, Iran. Weekly MSW generated in the period of 2008 to 2011 was used as input data for model learning. Moreover, Monte Carlo method was used to analyze uncertainty of the model results. Model performance evaluated and compared by statistical indices of Relative Mean Errors, Root Mean Squared Errors, Mean Absolute Relative Error and coefficient of determination. Comparison of SVM and PLS-SVM model showed PLS-SVM is superior to SVM model in predictive ability and calculation time saving. Also, results demonstrate which PLS couldsuccessfully identify the complex nonlinearity and correlations among input variables and minimize them. The uncertainty analysis also verified that the PLS-SVM model had more robustness than SVM and had a lower sensitivity to change of input variables.
    کلید واژگان
    Municipal solid waste
    Support vector machine
    Partial Least Square
    Intelligent Model

    شماره نشریه
    1
    تاریخ نشر
    2013-01-01
    1391-10-12
    ناشر
    University of Tehran/Springer
    سازمان پدید آورنده
    Faculty of Environment, University of Tehran, Tehran, Iran
    Faculty of Environment, University of Tehran, Tehran, Iran
    Faculty of Environment, University of Tehran, Tehran, Iran
    Faculty of Environment, University of Tehran, Tehran, Iran

    شاپا
    1735-6865
    2008-2304
    URI
    https://dx.doi.org/10.22059/ijer.2012.583
    https://ijer.ut.ac.ir/article_583.html
    https://iranjournals.nlai.ir/handle/123456789/24991

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب