Ring endomorphisms with nil-shifting property
(ندگان)پدیدآور
Ahmed, C. A. K.Salim, R. T. M.نوع مدرک
TextResearch Paper
زبان مدرک
Englishچکیده
Cohn called a ring $R$ is reversible if whenever $ab = 0,$ then $ba = 0$ for $a,bin R.$ The reversible property is an important role in noncommutative ring theory. Recently, Abdul-Jabbar et al. studied the reversible ring property on nilpotent elements, introducing the concept of commutativity of nilpotent elements at zero (simply, a CNZ ring). In this paper, we extend the CNZ property of a ring as follows: Let $R$ be a ring and $alpha$ an endomorphism of $R$, we say that $ R $ is right (resp., left) $alpha$-nil-shifting ring if whenever $ aalpha(b) = 0 $ (resp., $alpha(a)b = 0$) for nilpotents $a,b$ in $R$, $ balpha(a) = 0 $ (resp., $ alpha(b)a= 0) $. The characterization of $alpha$-nil-shifting rings and their related properties are investigated.
کلید واژگان
CNZ ringreversible ring
matrix ring
polynomial ring
Commutative algebra
شماره نشریه
03تاریخ نشر
2019-08-011398-05-10
ناشر
Central Tehran Branch, Islamic Azad Universityسازمان پدید آورنده
Department of Mathematics, University of Zakho, Kurdistan Region, IraqDepartment of Mathematics, Faculty of Science, University of Zakho, Kurdistan Region, Iraq
شاپا
2252-02012345-5934




