• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Mining and Environment
    • Volume 9, Issue 4
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Mining and Environment
    • Volume 9, Issue 4
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Improving reservoir rock classification in heterogeneous carbonates using boosting and bagging strategies: A case study of early Triassic carbonates of coastal Fars, south Iran

    (ندگان)پدیدآور
    Ghiasi-Freez, J.Ziaii, M.Moradzadeh, A.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    3.609 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Case Study
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    An accurate reservoir characterization is a crucial task for the development of quantitative geological models and reservoir simulation. In the present research work, a novel view is presented on the reservoir characterization using the advantages of thin section image analysis and intelligent classification algorithms. The proposed methodology comprises three main steps. First, four classes of reservoir intervals are defined using a limited number of porosity and permeability values obtained from the core plugs of Kangan and Dalan formations. Then seven micro-scale features including distribution of pore types (interparticle, interaparticle, moldic, and vuggy), pore complexity, and cement distribution as well as textural characteristics are extracted from thin section images. Finally, the features extracted from each photomicrograph and its corresponding reservoir class are used as the training data for several intelligent classifiers including decision trees, discriminant analysis functions, support vector machines, K-nearest neighbor models and two ensemble algorithms, named bagging and boosting. The relationship between the micro-scale features and the reservoir classes was studied. Performance of all classifiers is evaluated using the concepts of accuracy, precision, recall, and harmonic average. The results obtained showed that the bagging decision tree delivered the best performance among the models and improved the accuracy of simple models up to 7.7% compared with the best single classifier.
    کلید واژگان
    Reservoir Characterization
    Intelligent Classifiers
    Boosting and Bagging Strategies
    Image Analysis of Thin Sections
    Kangan and Dalan Formations

    شماره نشریه
    4
    تاریخ نشر
    2018-10-01
    1397-07-09
    ناشر
    Shahrood University of Technology
    سازمان پدید آورنده
    Faculty of Mining, Petroleum & Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran
    Faculty of Mining, Petroleum & Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran
    School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran

    شاپا
    2251-8592
    2251-8606
    URI
    https://dx.doi.org/10.22044/jme.2018.6673.1491
    http://jme.shahroodut.ac.ir/article_1195.html
    https://iranjournals.nlai.ir/handle/123456789/242981

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب