• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Mining and Environment
    • Volume 11, Issue 3
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Mining and Environment
    • Volume 11, Issue 3
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Integrating Geophysical Attributes with New Cuckoo Search Machine-Learning Algorithm to Estimate Silver Grade Values–Case Study: Zarshouran Gold Mine

    (ندگان)پدیدآور
    Alimoradi, A.Maleki, B.Karimi, A.Sahafzadeh, M.Abbasi, S.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    10.02 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    The exploration methods are divided into the direct and indirect categories. Among these, the indirect geophysical methods are more time- and cost-effective compared with the direct methods. The target of the geophysical investigations is to obtain an accurate image from the underground features. The Induced polarization (IP) is one of the common methods used for metal sulfide ore detection. Since metal ores are scattered in the host rock in the Zarshouran mine area, IP is considered as a major exploration method. Parallel to IP, the resistivity data gathering and processing are done to get a more accurate interpretation. In this work, we try to integrate the IP/RS geophysical attributes with borehole grade analyses and geological information using the cuckoo search machine-learning algorithm in order to estimate the silver grade values. The results obtained show that it is possible to estimate the grade values from the geophysical data accurately, especially in the areas without drilling data. This reduces the costs and time of the exploration and ore reserves estimation. Comparing the results of the intelligent inversion with the numerical methods, as the major tools to invert the geophysical data to the ore model, demonstrate a superior correlation between the results.
    کلید واژگان
    IP/RS attributes
    Cuckoo search
    Machine-Learning
    Zarshouran Deposit
    Numerical methods

    شماره نشریه
    3
    تاریخ نشر
    2020-07-01
    1399-04-11
    ناشر
    Shahrood University of Technology
    سازمان پدید آورنده
    Department of Mining Engineering, Imam Khomeini International University, Ghazvin, Iran
    Department of Mining Engineering, Imam Khomeini International University, Ghazvin, Iran
    Department of Mining Engineering, Imam Khomeini International University, Ghazvin, Iran
    Mining plus company, Vancouver, Canada
    Zarshouran gold mines and mineral industries development company, Tekab, Iran

    شاپا
    2251-8592
    2251-8606
    URI
    https://dx.doi.org/10.22044/jme.2020.9939.1923
    http://jme.shahroodut.ac.ir/article_1857.html
    https://iranjournals.nlai.ir/handle/123456789/242971

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب