نمایش مختصر رکورد

dc.contributor.authorJahangiri, M.en_US
dc.contributor.authorGhavami Riabi, Seyed R.en_US
dc.contributor.authorTokhmechi, B.en_US
dc.date.accessioned1399-07-09T03:32:35Zfa_IR
dc.date.accessioned2020-09-30T03:32:35Z
dc.date.available1399-07-09T03:32:35Zfa_IR
dc.date.available2020-09-30T03:32:35Z
dc.date.issued2018-04-01en_US
dc.date.issued1397-01-12fa_IR
dc.date.submitted2017-03-12en_US
dc.date.submitted1395-12-22fa_IR
dc.identifier.citationJahangiri, M., Ghavami Riabi, Seyed R., Tokhmechi, B.. (2018). Estimation of geochemical elements using a hybrid neural network-Gustafson-Kessel algorithm. Journal of Mining and Environment, 9(2), 499-511. doi: 10.22044/jme.2017.5513.1363en_US
dc.identifier.issn2251-8592
dc.identifier.issn2251-8606
dc.identifier.urihttps://dx.doi.org/10.22044/jme.2017.5513.1363
dc.identifier.urihttp://jme.shahroodut.ac.ir/article_1053.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/242843
dc.description.abstractBearing in mind that lack of data is a common problem in the study of porphyry copper mining exploration, our goal was set to identify the hidden patterns within the data and to extend the information to the data-less areas. To do this, the combination of pattern recognition techniques has been used. In this work, multi-layer neural network was used to estimate the concentration of geochemical elements. From 1755 surface and boreholes data available, analyzed by ICP, 70% was used for training, and the rest for testing. The average accuracy of estimators for 22 geochemical elements when using all data was equal to 75%. Based on validation, the optimal number of clusters for the total data was identified. The Gustafson-Kessel (GK) clustering was used to design the estimator for the geochemical element concentrations in different clusters, and the clusters were selected for estimation. The results obtained show that using GK, the estimator's average accuracy increase up to 84%. The accuracy of the elementsZn, As, Pb, Mo, and Mn with low accuracies of 0.51, 0.62, 0.64, 0.65, and 0.68 based on all data were developed to 0.76, 0.86, 0.76, 0.80, and 0.71 with the clustered data, respectively. The mean square error using all the data was 0.079, while in the case of hybrid developed method, it decreased to 0.048. There were error reductions in Al from 0.022 to 0.012, in As, from 0.105 to 0.025, and from 0.115 to 0.046 for S.en_US
dc.format.extent2444
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherShahrood University of Technologyen_US
dc.relation.ispartofJournal of Mining and Environmenten_US
dc.relation.isversionofhttps://dx.doi.org/10.22044/jme.2017.5513.1363
dc.subjectClustering algorithmen_US
dc.subjectEstimation Precision Improvementen_US
dc.subjectGustafson-Kesselen_US
dc.subjectGeochemical Elements Estimationen_US
dc.subjectNeural networken_US
dc.subjectExploitationen_US
dc.titleEstimation of geochemical elements using a hybrid neural network-Gustafson-Kessel algorithmen_US
dc.typeTexten_US
dc.typeOriginal Research Paperen_US
dc.contributor.departmentFaculty of Mining, Petroleum & Geophysics Engineering, Shahrood University of Technology, Shahrood, Iranen_US
dc.contributor.departmentFaculty of Mining, Petroleum & Geophysics Engineering, Shahrood University of Technology, Shahrood, Iranen_US
dc.contributor.departmentFaculty of Mining, Petroleum & Geophysics Engineering, Shahrood University of Technology, Shahrood, Iranen_US
dc.citation.volume9
dc.citation.issue2
dc.citation.spage499
dc.citation.epage511
nlai.contributor.orcid0000-0003-1516-0624


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد