• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Mining and Environment
    • Volume 9, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Mining and Environment
    • Volume 9, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Estimation of geochemical elements using a hybrid neural network-Gustafson-Kessel algorithm

    (ندگان)پدیدآور
    Jahangiri, M.Ghavami Riabi, Seyed R.Tokhmechi, B.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    2.387 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Bearing in mind that lack of data is a common problem in the study of porphyry copper mining exploration, our goal was set to identify the hidden patterns within the data and to extend the information to the data-less areas. To do this, the combination of pattern recognition techniques has been used. In this work, multi-layer neural network was used to estimate the concentration of geochemical elements. From 1755 surface and boreholes data available, analyzed by ICP, 70% was used for training, and the rest for testing. The average accuracy of estimators for 22 geochemical elements when using all data was equal to 75%. Based on validation, the optimal number of clusters for the total data was identified. The Gustafson-Kessel (GK) clustering was used to design the estimator for the geochemical element concentrations in different clusters, and the clusters were selected for estimation. The results obtained show that using GK, the estimator's average accuracy increase up to 84%. The accuracy of the elementsZn, As, Pb, Mo, and Mn with low accuracies of 0.51, 0.62, 0.64, 0.65, and 0.68 based on all data were developed to 0.76, 0.86, 0.76, 0.80, and 0.71 with the clustered data, respectively. The mean square error using all the data was 0.079, while in the case of hybrid developed method, it decreased to 0.048. There were error reductions in Al from 0.022 to 0.012, in As, from 0.105 to 0.025, and from 0.115 to 0.046 for S.
    کلید واژگان
    Clustering algorithm
    Estimation Precision Improvement
    Gustafson-Kessel
    Geochemical Elements Estimation
    Neural network
    Exploitation

    شماره نشریه
    2
    تاریخ نشر
    2018-04-01
    1397-01-12
    ناشر
    Shahrood University of Technology
    سازمان پدید آورنده
    Faculty of Mining, Petroleum & Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran
    Faculty of Mining, Petroleum & Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran
    Faculty of Mining, Petroleum & Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran

    شاپا
    2251-8592
    2251-8606
    URI
    https://dx.doi.org/10.22044/jme.2017.5513.1363
    http://jme.shahroodut.ac.ir/article_1053.html
    https://iranjournals.nlai.ir/handle/123456789/242843

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب