• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Operation and Automation in Power Engineering
    • Volume 5, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Operation and Automation in Power Engineering
    • Volume 5, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Solving Multi-objective Optimal Power Flow Using Modified GA and PSO Based on Hybrid Algorithm

    (ندگان)پدیدآور
    Effatnejad, R.Aliyari, H.Savaghebi, M.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    965.9کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    The Optimal Power Flow (OPF) is one of the most important issues in the power systems. Due to the complexity and discontinuity of some parameters of power systems, the classic mathematical methods are not proper for this problem. In this paper, the objective function of OPF is formulated to minimize the power losses of transmission grid and the cost of energy generation and improve the voltage stability and voltage profile, considering environmental issues. Therefore, the OPF problem is a nonlinear optimization problem consisting of continuous and discontinuous variables. To solve it, Non-dominated Sorting Genetic Algorithm-II (NSGA-II) and a new hybrid algorithm combining modified Particle Swarm Optimization (PSO) and Genetic algorithm (GA) methods are proposed. In this method, each of the algorithms is performed in its procedure and generates the primary population; then, the populations are ordered and from among them, populations with the highest propriety function are selected. The first population that guesses will enter the two algorithms' procedures for generating the new population. Note that the inputs of the two algorithms are the same; then, generates a new population. Now, there are three groups of populations: one created by modified GA, one created by modified PSO, and the other is the first initial population, and then sorted with the described sorting method.
    کلید واژگان
    Optimal power flow
    Multi-objective
    genetic algorithm
    Particle Swarm Optimization
    Design System & Algorithm

    شماره نشریه
    1
    تاریخ نشر
    2017-06-01
    1396-03-11
    ناشر
    University of Mohaghegh Ardabili
    دانشگاه محقق اردبیلی
    سازمان پدید آورنده
    Depatment of Electrical Engineering, Karaj Branch,Islamic Azad University
    Faculty of Electrical and Biomedical Engineering Qazvin Branch, Islamic Azad University
    Department of Electrical Engineering, Karaj branch, Islamic Azad University,

    شاپا
    2322-4576
    2423-4567
    URI
    https://dx.doi.org/10.22098/joape.2017.548
    http://joape.uma.ac.ir/article_548.html
    https://iranjournals.nlai.ir/handle/123456789/232940

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب