• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Water Sciences Research
    • Volume 6, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Water Sciences Research
    • Volume 6, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Long-term Streamflow Forecasting by Adaptive Neuro-Fuzzy Inference System Using K-fold Cross-validation: (Case Study: Taleghan Basin, Iran)

    (ندگان)پدیدآور
    Esmaeelzadeh, RezaBorhani Dariane, Alireza
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    433.4کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Streamflow forecasting has an important role in water resource management (e.g. flood control, drought management, reservoir design, etc.). In this paper, the application of Adaptive Neuro Fuzzy Inference System (ANFIS) is used for long-term streamflow forecasting (monthly, seasonal) and moreover, cross-validation method (K-fold) is investigated to evaluate test-training data in the model.Then, the results are compared with those of the typical validation method (i.e., using 75% of data for training and the remaining 25% for testing the validity of the trained model). Study area is Taleghan basin located in northwestern Tehran basin, Iran. The data used in this research consists of 19 years of monthly streamflow, precipitation and temperature records. To apply temperature and precipitation data in the model, the whole basin was divided into sub-basins and average values of each parameter for each sub-basin were allocated as model input. Finally, results were compared with those of the ANN model. It was found that the K-fold validation method leads to better performance than the typical method in terms of statistical indices. In addition, the results indicated the superiority of ANFIS model over ANN model in long-term forecasting.
    کلید واژگان
    Streamflow forecasting
    Adaptive Neuro Fuzzy Inference System (ANFIS)
    K-fold
    Sub-basin
    Artificial Neural Network (ANN)

    شماره نشریه
    1
    تاریخ نشر
    2014-11-01
    1393-08-10
    ناشر
    Islamic Azad University,South Tehran Branch
    سازمان پدید آورنده
    Department of Civil Engineering, Shahid Chamran University, Ahwaz, Iran
    Department of Civil Engineering, K. N. Toosi University of Tech., Tehran, Iran

    شاپا
    2251-7405
    2251-7413
    URI
    http://jwsr.azad.ac.ir/article_532829.html
    https://iranjournals.nlai.ir/handle/123456789/219094

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب