تحلیل مقایسه عملکرد شبکههای عصبی مصنوعی ومدلهای رگرسیونی پیشبینی رسوب معلق مطالعه موردی: حوضه آبخیز اسکندری واقع در حوضه آبریز زاینده رود
(ندگان)پدیدآور
ولی, عباسعلیمعیری, مسعودرامشت, محمد حسینموحدی نیا, ناصرنوع مدرک
Textزبان مدرک
فارسیچکیده
یکی از جنبههای حائز اهمیت در مدیریت محیط در ژئومورفولوژی کاربردی حل مشکل برآورد رسوب یک سیستم رودخانهای میباشد. هدف این مطالعه ارزیابی عملکرد مقایسهای دونوع شبکه عصبی مصنوعی (مدل ژئومورفولوژیکی و مدل غیر ژئومورفولوژیکی) و دو نوع مدل رگرسیونی (مدل توانی ومدل غیر خطی چندگانه) برای پیش بینی بار رسوب معلق حوضه اسکندری در حوضه آبریز زاینده رود میباشد. مدلها براساس آمار 104 حادثه وقوع همزمان ثبت شده دبی و رسوب طراحی شدهاند. پارامترهای ژئومورفولوژیکی بکار رفته در مدلهای مزبور شامل: نسبت ناهمواری، ضریب شکل و تراکم زهکشی میباشند. شبکههای عصبی مصنوعی طراحی شده  از نوع انتشار برگشتی چهار لایه است. بهترین نتایج پیشبینی مربوط به روش شبکه عصبی مصنوعی ژئومورفولوژیکی با ضریب تبیین معنی دار 98/0 و جذر میانگین خطای 49/4 در مقایسه با روش شبکه عصبی مصنوعی طراحی شده بر اساس آمار جریان با مقادیر ضریب تبیین 96/0 و خطای35/5 میباشد. عملکرد روشهای رگرسیونی با ضریب تبیین 893/0 و خطای66/8 برای روش چند متغیره غیرخطی ومقادیر ضریب تبیین 814/0 و خطای برآورد 05/15 برای روش غیر خطی ساده توانی ضعیفتر از شبکههای عصبی مشاهده گردید. تفاوت فاحش در شاخصهای ارزیابی مدلهای شبکه عصبی مصنوعی نسبت به روشهای رگرسیونی در عملکرد مناسب آنها برای تعداد کم  نمونههای مدل میباشد. بنابراین شبکههای عصبی مصنوعی به خصوص شبکههای ژئومورفولوژیکی به عنوان یک ابزار قوی پیش بینی شایسته بار رسوب یک سیستم پیچیده رودخانهای  معرفی میشوند.
کلید واژگان
بار رسوبرواناب
ژئومورفولوژی
شبکه عصبی مصنوعی
مدل رگرسیونی.
شماره نشریه
71تاریخ نشر
2010-11-221389-09-01
ناشر
دانشگاه تهرانUniversity of Tehran
شاپا
2008-630X2423-7760




