• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Pollution
    • Volume 6, Issue 3
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Pollution
    • Volume 6, Issue 3
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Evaluation of PM2.5 Emissions in Tehran by Means of Remote Sensing and Regression Models

    (ندگان)پدیدآور
    Jafarian, H.Behzadi, S.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    609.3کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Defined as any substance in the air that may harm humans, animals, vegetation, and materials, air pollution poses a great danger to human health. It has turned into a worldwide problem as well as a huge environmental risk. Recent years have witnessed the increase of air pollution in many cities around the world. Similarly, it has become a big problem in Iran. Although ground-level monitoring can provide accurate PM2.5 measurements, it has limited spatial coverage and resolution. As a result, Satellite Remote Sensing (RS) has emerged as an approach to estimate ground-level ambient air pollution, making it possible to monitor atmospheric particulate matters continuously and have a spatial coverage of them. Recent studies show a high correlation between ground level PM2.5, estimated by RS on the one hand, and measurements, collected at regulatory monitoring sites on the other. As such, the present study addresses the relation between air pollution and satellite images. For so doing, it derives RS estimates, using satellite measurements from Landsat satellite images. Monitoring data is the daily concentration of PM2.5 contaminants, obtained from air pollution stations. The relation between the concentration of pollutants and the values of various bands of Landsat satellite images is examined through 19 regression models. Among them, the Ensembles Bagged Trees has the lowest Root-Mean-Square Error (RMSE), equal to 21.88. Results show that this model can be used to estimate PM2.5 contaminants, based on Landsat satellite images.
    کلید واژگان
    Air pollution
    particulate matter
    GIS
    modelling

    شماره نشریه
    3
    تاریخ نشر
    2020-07-01
    1399-04-11
    ناشر
    University of Tehran
    سازمان پدید آورنده
    Department of Civil Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran
    Department of Civil Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran

    شاپا
    2383-451X
    2383-4501
    URI
    https://dx.doi.org/10.22059/poll.2020.292065.706
    https://jpoll.ut.ac.ir/article_76542.html
    https://iranjournals.nlai.ir/handle/123456789/207532

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب