• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Pollution
    • Volume 3, Issue 4
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Pollution
    • Volume 3, Issue 4
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Modeling environmental indicators for land leveling, using Artificial Neural Networks and Adaptive Neuron-Fuzzy Inference System

    (ندگان)پدیدآور
    Alzoubi, IshamDelavar, Mahmoud R.Mirzaei, FarhadNadjar Arrabi, Babak
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.363 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Land leveling is one of the most important steps in soil preparation and cultivation. Although land leveling with machines requires considerable amount of energy, it delivers a suitable surface slope with minimal soil deterioration as well as damage to plants and other organisms in the soil. Notwithstanding, in recent years researchers have tried to reduce fossil fuel consumption and its deleterious side effects, using new techniques such as Artificial Neural Networks (ANNs) and Adaptive Neuron-Fuzzy Inference System (Fuzzy shell-clustering algorithm) models that will lead to a noticeable improvement in the environment. The present research investigates the effects of various soil properties such as Embankment Volume, Soil Compressibility Factor, Specific Gravity, Moisture Content, Slope, Sand Percent, and Soil Swelling Index in energy consumption. The study consists of 90 samples, collected from three different regions. The grid size has been set on 20 m * 20 m from a farmland in Karaj Province, Iran. The aim is to determine the best linear model, using ANNs and ANFIS model to predict environmental indicatorsand find the best model for land leveling in terms of its output (i.e. Labor Energy, Fuel energy, Total Machinery Cost, and Total Machinery Energy). Results show that ANFIS can successfully predict labor energy, fuel energy, total machinery cost, and total machinery energy. All ANFIS-based models have R2 values above 0.995 and MSE values below 0.002 with higher accuracy in prediction, given their higher R2 value and lower RMSE value.
    کلید واژگان
    ANFIS
    Artificial Neural Network
    Energy
    environmental research
    land levelling

    شماره نشریه
    4
    تاریخ نشر
    2017-10-01
    1396-07-09
    ناشر
    University of Tehran
    سازمان پدید آورنده
    Department of Surveying and Geometric Engineering, Engineering Faculty,University of Tehran, Iran
    Department of Surveying and Geometric Engineering, Engineering Faculty,University of Tehran, Iran
    College of Agriculture and Natural resources, University of Tehran, Iran
    School of Electrical and Computer Eng., College of Eng., University of Tehran,Iran

    شاپا
    2383-451X
    2383-4501
    URI
    https://dx.doi.org/10.22059/poll.2017.62776
    https://jpoll.ut.ac.ir/article_62776.html
    https://iranjournals.nlai.ir/handle/123456789/207482

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب