• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Pollution
    • Volume 2, Issue 4
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Pollution
    • Volume 2, Issue 4
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Short-term prediction of atmospheric concentrations of ground-level ozone in Karaj using artificial neural network

    (ندگان)پدیدآور
    Asadollahfardi, GholamrezaTayebi Jebeli, MojtabaMehdinejad, MahdiRajabipour, Mohammad Javad
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    896.0کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Air pollution is a challenging issue in some of the large cities in developing countries. Air quality monitoring and interpretation of data are two important factors for air quality management in urban areas. Several methods exist to analyze air quality. Among them, we applied the dynamic neural network (TDNN) and Radial Basis Function (RBF) methods to predict the concentrations of ground-level ozone in Karaj City in Iran. Input data included humidity, hour temperature, wind speed, wind direction, PM2.5, PM10 and benzene, which were monitored in 2014. The coefficient of determination between the observed and predicted data was 0.955 and 0.999 for the TDNN and RBF, respectively. The Index of Agreement (IA) between the observed and predicted data was 0.921 for TDNN and 0.9998 for RBF. Both methods determined reliable results. However, the RBF neural network performance had better results than the TDNN neural network. The sensitivity analysis related to the TDNN neural network indicated that the PM2.5 had the greatest and benzene had the minimum effect on prediction of ground-level ozone concentration in comparison with other parameters in the study area. 
    کلید واژگان
    Air pollution
    ground-level ozone
    Karaj
    RBF neural network
    TDNN

    شماره نشریه
    4
    تاریخ نشر
    2016-10-01
    1395-07-10
    ناشر
    University of Tehran
    سازمان پدید آورنده
    Department of Civil Engineering, Kharazmi University, Tehran, 43 Mofateh Ave, Iran
    Department of Civil Engineering, Kharazmi University, Tehran, 43 Mofateh Ave, Iran
    Department of Civil Engineering, Kharazmi University, Tehran, 43 Mofateh Ave, Iran
    Department of Civil Engineering, Kharazmi University, Tehran, 43 Mofateh Ave, Iran

    شاپا
    2383-451X
    2383-4501
    URI
    https://dx.doi.org/10.7508/pj.2016.04.009
    https://jpoll.ut.ac.ir/article_58311.html
    https://iranjournals.nlai.ir/handle/123456789/207456

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب