• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Pollution
    • Volume 6, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Pollution
    • Volume 6, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Estimation of Phosphorus Reduction from Wastewater by Artificial Neural Network, Random Forest and M5P Model Tree Approaches

    (ندگان)پدیدآور
    Kumar, S.Deswal, S.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    589.9کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    This study aims to examine the ability of free floating aquatic plants to remove phosphorus and to predict the reduction of phosphorus from rice mill wastewater using soft computing techniques. A mesocosm study was conducted at the mill premises under normal conditions, and reliable results were obtained. Four aquatic plants, namely water hyacinth, water lettuce, salvinia, and duckweed were used for this study. The growth of all the plants was inhibited in rice mill wastewater due to low pH, high chemical oxygen demand, high conductivity, and high phosphorus concentration. Subsequently, a 1:1 ratio of mill water to tap water was used. A control was maintained to assess the aquatic plant technology. In this study, the aquatic plants reduced the total phosphorus content up to 80 % within 15 days. A comparison between three modeling techniques e.g. Artificial neural network (ANN), Random forest (RF) and M5P has been done considering the reduction rate of total phosphorus as predicted variable. In this paper, the data set has been divided in two parts, 70 % is used to train the model and residual 30 % is used for testing of the model. Artificial neural network shows promising results as compared to random forest and M5P tree modelling. The root mean square error (RMSE) for all the three models is observed as 0.0162, 0.0204 and 0.0492 for ANN, RF and M5P tree, respectively.
    کلید واژگان
    aquatic plants
    rice mill
    modelling
    Water hyacinth
    Total phosphorus

    شماره نشریه
    2
    تاریخ نشر
    2020-04-01
    1399-01-13
    ناشر
    University of Tehran
    سازمان پدید آورنده
    Department of Civil Engineering, National Institute of Technology Kurukshetra, P.O.Box 136119, Kurukshetra, India
    Department of Civil Engineering, National Institute of Technology Kurukshetra, P.O.Box 136119, Kurukshetra, India

    شاپا
    2383-451X
    2383-4501
    URI
    https://dx.doi.org/10.22059/poll.2020.293086.717
    https://jpoll.ut.ac.ir/article_75230.html
    https://iranjournals.nlai.ir/handle/123456789/207366

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب