• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Pollution
    • Volume 3, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Pollution
    • Volume 3, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Capabilities of data assimilation in correcting sea surface temperature in the Persian Gulf

    (ندگان)پدیدآور
    Abbasi, Mahmud RezaChegini, VahidSadrinasab, MasoudSiadatmousavi, Seyed Mostafa
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    888.5کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Predicting the quality of water and air is a particular challenge for forecasting systems that support them. In order to represent the small-scale phenomena, a high-resolution model needs accurate capture of air and sea circulations, significant for forecasting environmental pollution. Data assimilation is one of the state of the art methods to be used for this purpose. Due to the importance of thermal structure in monitoring the variations of environmental phenomena, the present study has used Sea Surface Temperature (SST) in data assimilation method to optimize this parameter. SST is one of the most important factors to conduct researches on the ocean, the atmosphere, and their interaction, not to mention monitoring and forecasting air and ocean phenomena as well as commercial and fishing communities and weather forecasts. This study has aimed to present a satellite-derived SST based on pathfinder advanced very high resolution radiometer (AVHRR) data assimilating in FVCOM (finite volume community ocean model) on the Persian Gulf to examine the effect of data assimilation by using the Cressman scheme. The performance of this method has been compared to the optimal interpolation SST (OISST) data, via both visual comparisons and statistical parameters. Applying assimilation method improves correlation coefficient of the model from 0.92 to 0.99. Results demonstrate that the modeled SST has been completely reconstructed by the data assimilated experiment via the Cressman scheme for this region. The spatial and temporal pattern of SST reveals a significant improvement in the entire domain during the investigated period in the gulf.
    کلید واژگان
    data assimilation
    cressman
    FVCOM
    OISST
    SST

    شماره نشریه
    2
    تاریخ نشر
    2017-04-01
    1396-01-12
    ناشر
    University of Tehran
    سازمان پدید آورنده
    Iranian National Institute for Oceanography and Atmospheric Science (INIOAS), Tehran, Iran
    Iranian National Institute for Oceanography and Atmospheric Science (INIOAS), Tehran, Iran
    Graduate Faculty of Environment, University of Tehran, Tehran, Iran
    School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran

    شاپا
    2383-451X
    2383-4501
    URI
    https://dx.doi.org/10.7508/pj.2017.02. 009
    https://jpoll.ut.ac.ir/article_60377.html
    https://iranjournals.nlai.ir/handle/123456789/207330

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب