• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Chemical Methodologies
    • Volume 1, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Chemical Methodologies
    • Volume 1, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Study of Quantitative Structure-Activity Relationship (QSAR) of Diarylaniline Analogues as in Vitro Anti-HIV-1 Agents in Pharmaceutical Interest

    (ندگان)پدیدآور
    Bouakarai, YounessKhalil, FouadBouachrin, Mohammed
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.087 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    A study of quantitative structure-activity relationship (QSAR) is applied to a set of 24 molecules derived from diarylaniline to predict the anti-HIV-1 biological activity of the test compounds and find a correlation between the different physic-chemical parameters (descriptors) of these compounds and its biological activity, using principal components analysis (PCA), multiple linear regression (MLR), multiple non-linear regression (MNLR) and the artificial neural network (ANN). We accordingly proposed a quantitative model (non-linear and linear QSAR models), and we interpreted the activity of the compounds relying on the multivariate statistical analysis. The topological descriptors were computed with ACD/ChemSketch and ChemBioOffice14.0 programs. A correlation was found between the experimental activity and those obtained by MLR and MNLR such as (Rtrain = 0.886 ; R2train = 0.786) and (Rtrain = 0.925 ; R2train = 0.857) for the training set compounds, and (RMLR-test = 0.6) and (RMNLR-test = 0.7) for a randomly chosen test set of compounds, this result could be improved with ANN such as (R = 0.916 and R2 = 0.84) with an architecture ANN (6-1-1). To evaluate the performance of the neural network and the validity of our choice of descriptors selected by MLR and trained by MNLR and ANN, we used cross-validation method (CV) including (R = 0.903 and R2 = 0.815) with the procedure leave-one-out (LOO). The results showed that the MLR and MNLR have served to predict activities, but when compared with the results given by a 6-1-1 ANN model. We realized that the predictions fulfilled by the latter model were more effective than the other models. The statistical results indicated that this model is statistically significant and showing a very good stability towards the data variation in leave-one-out (LOO) cross validation.
    کلید واژگان
    HIV-1 virus
    reverse transcriptase (RT)
    diarylaniline derivatives
    QSAR
    PCA
    Physical chemistry

    شماره نشریه
    2
    تاریخ نشر
    2017-10-01
    1396-07-09
    ناشر
    Sami Publishing Company
    سازمان پدید آورنده
    LAC, Laboratory of Applied Chemistry, Faculty ofScience and Technology, University Sidi Mohammed Ben Abdellah, Fez, Morocco
    Equipe Matériaux, Environnement & Modélisation,ESTM, University Moulay Ismail, Meknes, Morocco
    LAC, Laboratory of Applied Chemistry, Faculty ofScience and Technology, University Sidi Mohammed Ben Abdellah, Fez, Morocco

    شاپا
    2645-7776
    2588-4344
    URI
    https://dx.doi.org/10.22631/chemm.2017.101407.1016
    http://www.chemmethod.com/article_53807.html
    https://iranjournals.nlai.ir/handle/123456789/20643

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب