• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Particle Science & Technology
    • Volume 5, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Particle Science & Technology
    • Volume 5, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Adsorption of CO<sub>2</sub> and SO<sub>2</sub> on multi-walled carbon nanotubes: experimental data and modeling using artificial neural network

    (ندگان)پدیدآور
    Iraji, NaghmehHojjat, MohammadAghamiri, SeyedfoadTalaie, Mohammad RezaMolyanyan, Elham
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    19.59 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Multi-walled carbon nanotubes (MWCNTs) containing hydroxylgroups (OH-MWCNT) were modified by functionalization with 3-[2-(2-aminoethylamino)ethylamino]propyl trimethoxysilane (TRI). Adsorption isotherms of pure CO2 and SO2 on the pristine MWCNT, OH-MWCNT, and amine functionalized MWCNT (amine-MWCNT) were measured at two temperatures of 313.2 K and 323.2 K and pressures up to 2.1 bar by a static volumetric method. Capacities of all three types of adsorbents for CO2 adsorption are greater than those of CO2. The performance of amine-MWCNT in adsorpting CO2 is higher than the other two adsorbents. The average saturated capacity of amine-MWCNT for adsorption of pure CO2 at 313.2 K are about 38.6% and 20.8% higher than OH-MWCNT and pristine-MWCNT, respectively. Corresponding values for adsorption of pure CO2 are about 51.3% and 89.65%. Also, the equilibrium adsorption capacity of pristine MWCNT and amine-MWCNT for mixtures for CO2, nitrogen, and water vapor at 299.2 K was obtained. The equilibrium adsorption of CO2 increases as the water content increases in the presence of diluting gas (nitrogen). Freundlich and Langmuir equations were fitted on experimental adsorption isotherms. The Freundlich equation predicts experimental data better than the Langmuir equation. A multi-layer perceptron artificial neural network (ANN) model has been also proposed for predicting adsorption experimental data. The average and maximum difference between experimental data and values predicted by ANN model are about 3% and 24%, respectively.
    کلید واژگان
    Adsorption
    MWCNT
    Isotherm
    Carbon Dioxide
    Artificial neural network

    شماره نشریه
    1
    تاریخ نشر
    2019-05-01
    1398-02-11
    ناشر
    Iranian Research Organization for Science and Technology
    سازمان پدید آورنده
    Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
    Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
    Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
    Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
    Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran

    شاپا
    2423-4087
    2423-4079
    URI
    https://dx.doi.org/10.22104/jpst.2019.3317.1140
    http://jpst.irost.ir/article_805.html
    https://iranjournals.nlai.ir/handle/123456789/205163

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب