• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Renewable Energy and Environment
    • Volume 6, Issue 3
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Renewable Energy and Environment
    • Volume 6, Issue 3
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Implementation of Adaptive Neuro-Fuzzy Inference System (Anfis) for Performance Prediction of Fuel Cell Parameters

    (ندگان)پدیدآور
    Mostafaeipour, AliQolipour, MojtabaGoudarzi, HosseinJahangiri, MehdiGolmohammadi, Amir-MohammadRezaei, MostafaGoli, AlirezaSadeghikhorami, LadanSadeghi Sedeh, AliKhalifeh Soltani, Seyad Rashid
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    436.2کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Fuel cells are potential candidates for storing energy in many applications; however, their implementation is limited due to poor efficiency and high initial and operating costs. The purpose of this research is to find the most influential fuel cell parameters by applying the adaptive neuro-fuzzy inference system (ANFIS). The ANFIS method is implemented to select highly influential parameters for proton exchange membrane (PEM) element of fuel cells. Seven effective input parameters are considered including four parameters of semi-empirical coefficients, parametric coefficient, equivalent contact resistance, and adjustable parameter. Parameters with higher influence are then identified. An optimal combination of the influential parameters is presented and discussed. The ANFIS models used for predicting the most influential parameters in the performance of fuel cells were performed by the well-known statistical indicators of the root-mean-squared error (RMSE) and coefficient of determination (R2). Conventional error statistical indicators, RMSE, r, and R2, were calculated. Values of R2 were calculated as of 1.000, 0.9769, and 0.9652 for three different scenarios, respectively. R2 values showed that the ANFIS could be properly used for yield prediction in this study
    کلید واژگان
    Adaptive Neuro-Fuzzy Inference System (ANFIS)
    Fuel Cell
    optimization
    Proton Exchange Membrane
    Advanced Energy Technologies
    Fuel cells

    شماره نشریه
    3
    تاریخ نشر
    2019-07-01
    1398-04-10
    ناشر
    Materials and Energy Research Center (MERC) Iranian Association of Chemical Engineers (IAChE)
    سازمان پدید آورنده
    Department of Industrial Engineering, Yazd University, Yazd, Iran
    Department of Industrial Engineering, Yazd University, Yazd, Iran
    School of Architecture and Planning, University of New Mexico, NM, USA
    Department of Mechanical Engineering, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
    Department of Industrial Engineering, Yazd University, Yazd, Iran
    Department of Industrial Engineering, Yazd University, Yazd, Iran
    Department of Industrial Engineering, Yazd University, Yazd, Iran
    Department of Electrical Engineering, Shiraz University, Shiraz, Iran
    Department of Industrial Engineering, Yazd University, Yazd, Iran
    Department of Industrial Engineering, Yazd University, Yazd, Iran

    شاپا
    2423-5547
    2423-7469
    URI
    https://dx.doi.org/10.30501/jree.2019.98989
    http://www.jree.ir/article_98989.html
    https://iranjournals.nlai.ir/handle/123456789/201533

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب