• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Theory of Approximation and Applications
    • Volume 13, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Theory of Approximation and Applications
    • Volume 13, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Second-Order Accurate Numerical Approximation for Two-Sided Fractional Boundary Value Advection-Diffusion Problem

    (ندگان)پدیدآور
    Shivanian, ElyasKhodabandehlo, Hamid Reza
    Thumbnail
    نوع مدرک
    Text
    Research Articles
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Fractional order partial differential equations are generalization of classical partialdifferential equations. Increasingly, these models are used in applications such as fluid flow, financeand others. In this paper we examine some practical numerical methods to solve a class of initial-boundary value fractional partial differential equations with variable coefficients on a finite domain. An approach based on the classical Crank-Nicolson method combined with spatial extrapolation is used to obtain temporally and spatially second-order accurate numerical estimates. Stability, consistency, and convergence of the method are examined. It is shown that the fractional Crank-Nicolson method based on the shifted Gr"{u}nwaldformula is unconditionally stable. Some numerical examples are presented and compared with the exact analytical solutionfor its order of convergence.Fractional order partial differential equations are generalization of classical partialdifferential equations. Increasingly, these models are used in applications such as fluid flow, financeand others. In this paper we examine some practical numerical methods to solve a class of initial-boundary value fractional partial differential equations with variable coefficients on a finite domain. An approach based on the classical Crank-Nicolson method combined with spatial extrapolation is used to obtain temporally and spatially second-order accurate numerical estimates. Stability, consistency, and convergence of the method are examined. It is shown that the fractional Crank-Nicolson method based on the shifted Gr"{u}nwaldformula is unconditionally stable. Some numerical examples are presented and compared with the exact analytical solutionfor its order of convergence.
    کلید واژگان
    Numerical fractional PDE
    Two-sided fractional partial differential equation
    Shifted Gr"{u}nwald-Letnikov formula
    Fractional diffusion
    Crank-Nicolson method

    شماره نشریه
    1
    تاریخ نشر
    2019-03-01
    1397-12-10
    ناشر
    Islamic Azad University of Arak
    سازمان پدید آورنده
    Department of Mathematics, Imam Khomeini International University, Qazvin, 34149-16818, Iran
    Department of Mathematics, Imam Khomeini International University, Qazvin, 34149-16818, Iran

    شاپا
    2538-2217
    2676-3052
    URI
    http://msj.iau-arak.ac.ir/article_664232.html
    https://iranjournals.nlai.ir/handle/123456789/20056

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب