The Operational matrices with respect to generalized Laguerre polynomials and their applications in solving linear di erential equations with variable coe cients
(ندگان)پدیدآور
خلته بجدی, زاحمدی اصل, سامین عطایی, انوع مدرک
TextResearch Articles
زبان مدرک
Englishچکیده
In this paper, a new and e cient approach based on operational matrices with respect to the gener-alized Laguerre polynomials for numerical approximation of the linear ordinary di erential equations(ODEs) with variable coe cients is introduced. Explicit formulae which express the generalized La-guerre expansion coe cients for the moments of the derivatives of any di erentiable function in termsof the original expansion coe cients of the function itself are given in the matrix form. The mainimportance of this scheme is that using this approach reduces solving the linear di erential equationsto solve a system of linear algebraic equations, thus greatly simplify the problem. In addition, severalnumerical experiments are given to demonstrate the validity and applicability of the method.
شماره نشریه
2تاریخ نشر
2013-09-011392-06-10
ناشر
Islamic Azad University of Arakسازمان پدید آورنده
دانشگاه بیرجنددانشگاه بیرجند
دانشگاه خواجه نصیر الدین توسی تهران
شاپا
2538-22172676-3052




