• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Sciences, Islamic Republic of Iran
    • Volume 31, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Sciences, Islamic Republic of Iran
    • Volume 31, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Classification Method for E-mail Spam Using a Hybrid Approach for Feature Selection Optimization

    (ندگان)پدیدآور
    Hassani, ZeinabHajihashemi, vahidBorna, KeivanSahraei Dehmajnoonie, Iman
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    337.9کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Spam is an unwanted email that is harmful to communications around the world. Spam leads to a growing problem in a personal email, so it would be essential to detect it. Machine learning is very useful to solve this problem as it shows good results in order to learn all the requisite patterns for classification due to its adaptive existence. Nonetheless, in spam detection, there are a large number of features to attend as they play an essential role in detection efficiency. In this article, we're working on a feature selection method to e-mail spam. This approach is considered a hybrid of optimization algorithms and classifiers in machine learning. Binary Whale Optimization (BWO) and Binary Grey Wolf Optimization (BGWO) algorithms are used for feature selection and K-Nearest Neighbor (KNN) and Fuzzy K-Nearest Neighbor (FKNN) algorithms are applied as the classifiers in this research. The proposed method is tested on the "SPAMBASE" datasets from UCI Machine learning Repesotries and the experimental results revealed the highest accuracy of 97.61% on this dataset. The obtained results indicateed that the proposed method is suitable and capable to provide excellent performance in comparison with other methods.
    کلید واژگان
    Spam Mails
    Whale Optimization Algorithm
    Grey Wolf Optimization Algorithm
    fuzzy K-Nearest Neighbor algorithm (FKNN)
    Feature Selection

    شماره نشریه
    2
    تاریخ نشر
    2020-04-01
    1399-01-13
    ناشر
    University of Tehran
    سازمان پدید آورنده
    Department of computer science, Kosar University of Bojnord, Iran.
    Student Member, IEEE
    Faculty of Mathematics and Computer Science, Kharazmi University, Tehran, IRAN
    Science and Research Branch, Islamic Azad University, kerman, Iran

    شاپا
    1016-1104
    2345-6914
    URI
    https://dx.doi.org/10.22059/jsciences.2020.288729.1007444
    https://jsciences.ut.ac.ir/article_74790.html
    https://iranjournals.nlai.ir/handle/123456789/196001

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب