نمایش مختصر رکورد

dc.contributor.authorJahanbakhsh-Nagadeh, Zoleikhafa_IR
dc.contributor.authorFeizi-Derakhshi, Mohammad-Rezafa_IR
dc.contributor.authorSharifi, Arashfa_IR
dc.date.accessioned1399-07-09T01:15:43Zfa_IR
dc.date.accessioned2020-09-30T01:15:43Z
dc.date.available1399-07-09T01:15:43Zfa_IR
dc.date.available2020-09-30T01:15:43Z
dc.date.issued2020-05-21en_US
dc.date.issued1399-03-01fa_IR
dc.date.submitted2019-02-12en_US
dc.date.submitted1397-11-23fa_IR
dc.identifier.citationJahanbakhsh-Nagadeh, Zoleikha, Feizi-Derakhshi, Mohammad-Reza, Sharifi, Arash. (1399). A Speech Act Classifier for Persian Texts and its Application in Identifying Rumors. مجله علمی-پژوهشی رایانش نرم و فناوری اطلاعات, 9(1), 18-27.fa_IR
dc.identifier.issn2383-1006
dc.identifier.issn2588-4913
dc.identifier.urihttp://jscit.nit.ac.ir/article_103557.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/195430
dc.description.abstractSpeech Acts (SAs) are one of the important areas of pragmatics, which give us a better understanding of the state of mind of the people and convey an intended language function. Knowledge of the SA of a text can be helpful in analyzing that text in natural language processing applications. This study presents a dictionary-based statistical technique for Persian SA recognition. The proposed technique classifies a text into seven classes of SA based on four criteria: lexical, syntactic, semantic, and surface features. WordNet as the tool for extracting synonym and enriching features dictionary is utilized. To evaluate the proposed technique, we utilized four classification methods including Random Forest (RF), Support Vector Machine (SVM), Naive Bayes (NB), and K-Nearest Neighbors (KNN). The experimental results demonstrate that the proposed method using RF and SVM as the best classifiers achieved a state-of-the-art performance with an accuracy of 0.95 for classification of Persian SAs. Our original vision of this work is introducing an application of SA recognition on social media content, especially identifying the common SA in rumors and its application in the rumor detection. Therefore, the proposed system utilized to determine the common SAs in rumors. The results showed that Persian rumors are often expressed in three SA classes including narrative, question, and threat, and in some cases with the request SA. Also, the evaluation results indicate that SA as a distinctive feature between rumors and non-rumors improves the accuracy of rumor identification from 0.762 (based on common context features) to 0.791 (the combination of common context features and four SA classes).fa_IR
dc.format.extent596
dc.format.mimetypeapplication/pdf
dc.languageفارسی
dc.language.isofa_IR
dc.publisherدانشگاه صنعتی نوشیروانی بابلfa_IR
dc.publisherBabol Noshirvani University of Technologyen_US
dc.relation.ispartofمجله علمی-پژوهشی رایانش نرم و فناوری اطلاعاتfa_IR
dc.relation.ispartofJournal of Soft Computing and Information Technologyen_US
dc.subjectSpeech Actfa_IR
dc.subjectPersian text classificationfa_IR
dc.subjectFeature Extractionfa_IR
dc.subjectWordNetfa_IR
dc.subjectRumor detectionfa_IR
dc.titleA Speech Act Classifier for Persian Texts and its Application in Identifying Rumorsfa_IR
dc.typeTexten_US
dc.typeمقاله پژوهشی انگلیسیfa_IR
dc.contributor.departmentDepartment of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.fa_IR
dc.contributor.departmentDepartment of Computer Engineering, Faculty of Electrical and Computer Engineering, University of Tabriz, Iran.fa_IR
dc.contributor.departmentDepartment of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.fa_IR
dc.citation.volume9
dc.citation.issue1
dc.citation.spage18
dc.citation.epage27
nlai.contributor.orcid0000-0002-2441-9477


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد