• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Advances in Computer Research
    • Volume 10, Issue 4
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Advances in Computer Research
    • Volume 10, Issue 4
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    MCSM-DEEP: A Multi-Class Soft-Max Deep Learning Classifier for Image Recognition

    (ندگان)پدیدآور
    Safari, Aref
    Thumbnail
    نوع مدرک
    Text
    Original Manuscript
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Convolutional neural networks show outstanding performance in many image processing problems, such as image recognition, object detection and image segmentation. Semantic segmentation is a very challenging task that requires recognizing, understanding what's in the image in pixel level. The goal of this research is to develop on the known mathematical properties of the soft-max function and demonstrate how they can be exploited to conclude the convergence of learning algorithm in a simple application of image recognition in supervised learning. So, we utilize results from convex analysis theory which associated with hierarchical architecture to derive additional properties of the soft-max function not yet covered in the existing literature for Multi-Class Classification problems. The proposed MC-DEEP model represents an average accuracy of 90.25% in different layers setting with 95% confidence interval in best initial settings in deep convolutional layers which applied on MNIST dataset. The results show that the regularized networks not only could provide better segmentation results with regularization effect than the original ones but also have certain robustness to noise.
    کلید واژگان
    deep learning
    Image recognition
    Soft-Max Activation Function
    H.3. Artificial Intelligence

    شماره نشریه
    4
    تاریخ نشر
    2019-11-01
    1398-08-10
    ناشر
    Sari Branch, Islamic Azad University
    سازمان پدید آورنده
    Department of Computer Engineering, Rasht Branch, Islamic Azad University, Rasht, Iran

    شاپا
    2345-606X
    2345-6078
    URI
    http://jacr.iausari.ac.ir/article_675331.html
    https://iranjournals.nlai.ir/handle/123456789/19388

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب