Proposing a Method to Classify Texts Using Data Mining
(ندگان)پدیدآور
Rostami, MohammadAyat, Seyed SaeedAttarzadeh, ImanSaghari, Faridنوع مدرک
Textزبان مدرک
Englishچکیده
Today a significant part of available data is saved in text database or text documents. The most important thing is to organize these documents. One way to organize text documents is to classify them. To classify texts is to assign text documents to their actual categories. This has two main steps, i.e. feature- and learning algorithm selection. There have been several methods suggested to classify text documents. In this paper, we propose a combined method to do this more efficiently. When selecting features, the proposed method uses filtering in order to reduce complexity and it is implemented using naïve Bayes and decision tree categories. Results indicate advantages of this combined method to individual classifying.
کلید واژگان
Data Miningtext documents
classify
Decision tree
Bayes
شماره نشریه
4تاریخ نشر
2015-11-011394-08-10
ناشر
Sari Branch, Islamic Azad Universityسازمان پدید آورنده
Member of Young Researchers Club, Islamic Azad University, Dehaghan Branch, Isfahan, IranAssociate Professor, Department of Computer Engineering and Information Technology, Payame Noor University
Department of Computer Engineering, Islamic Azad University, Dezfoul Branch, Iran
MS c, software engineering department
شاپا
2345-606X2345-6078




