• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Quarterly Journal of Tethys
    • Volume 4, Issue 4
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Quarterly Journal of Tethys
    • Volume 4, Issue 4
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Optimizing Neural Network for Monthly Rainfall-Runoff Modeling with Denoised-Jittered Data

    (ندگان)پدیدآور
    پدیدآور نامشخص
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    462.1کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Successful modeling of hydro-environmental processes widely relies on quantity and quality of accessible data and noisy data might effect on the functioning of the modeling. On the other hand in training phase of any Artificial Intelligence (AI) based model, each training data set is usually a limited sample of possible patterns of the process and hence, might not show the behavior of whole population. Accordingly in the present article first, wavelet-based denoising method was used in order to smooth hydrological time series and then small normally distributed noises with the mean of zero and various standard deviations were generated and added to the smoothed time series to form different denoised-jittered training data sets, for Artificial Neural Network (ANN) modeling of monthly rainfall – runoff process of the Pole Saheb(Anyan) station in Zarrineh River watershed, which is a portion of orumiyeh lake drainage basin, that is located in Iran. To evaluate the modeling performance, the obtained results were compared with those of multi linear regression and Auto Regressive Integrated Moving Average models. Comparison of the obtained results via the trained ANN using denoised- jittered data showed that the proposed data pre-processing approach could improve performance of the ANN based rainfall-runoff modeling of the case study up to 38% in the verification phase.
    کلید واژگان
    Rainfall-Runoff modeling
    ANN
    Wavelet denoising
    Jittered data
    Zarrineh river watershed

    شماره نشریه
    4
    تاریخ نشر
    2016-12-01
    1395-09-11
    ناشر
    Payame Noor University
    دانشگاه پیام نور

    شاپا
    2476-7190
    2345-2471
    URI
    http://jtethys.journals.pnu.ac.ir/article_3409.html
    https://iranjournals.nlai.ir/handle/123456789/184971

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب