• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Science and Technology Transactions of Civil Engineering
    • Volume 33, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Science and Technology Transactions of Civil Engineering
    • Volume 33, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Fuzzy and neuro-fuzzy models for short-term water demand forecasting in Tehran

    (ندگان)پدیدآور
    پدیدآور نامشخص
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.441 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Water demand forecasting cannot be described by any mathematical function because it is a complicated function of a large number of interacting variables. In this paper, several fuzzy and neuro-fuzzy models are presented and their results for short-term water demand forecasting inTehran are compared. Weather data from threeTehran weather stations is weighted with the Thissen method and effective input data parameters are selected with regression of weighted effective weather and consumption data. The effective parameters include daily average temperature, relative humidity percent and last day, last week and last year water consumption. Consumption of all days between last day and the last week were also used. For the construction of fuzzy models a fuzzy rule-based approach is applied. The working rules are formulated from a set of past observations such as the relation between the parameters and the given input/output data sets. For neuro fuzzy modeling the toolbox function of Adaptive Neuro-Fuzzy Inference System (ANFIS) constructs a Sugeno Inference System (SFIS). The membership function parameters are adjusted using a back propagation algorithm in combination with a least squares method. Outputs of the fuzzy and the neuro fuzzy models demonstrate that the results of fuzzy models do not show high accuracy, but neuro fuzzy models produce better results. Besides, outputs of the neuro fuzzy models with just water consumption inputs have high accuracy. A comparison of outputs with the results of the Artificial Neural Networks (ANN) approach shows the capability of the ANFIS model to predictTehranwater consumption.
    کلید واژگان
    Daily water demand
    fuzzy sets
    neuro-fuzzy inference system (ANFIS)
    temperature
    Relative humidity

    شماره نشریه
    1
    تاریخ نشر
    2009-01-01
    1387-10-12
    ناشر
    Shiraz University

    شاپا
    2228-6160
    URI
    https://dx.doi.org/10.22099/ijstc.2009.701
    http://ijstc.shirazu.ac.ir/article_701.html
    https://iranjournals.nlai.ir/handle/123456789/17284

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب