پیش بینی کشش سطحی مایعات یونی بر پایه ایمیدازولیوم با بکارگیری شبکه عصبی مصنوعی
(ندگان)پدیدآور
لشکربلوکی, مصطفینوع مدرک
Textمقاله شیمی
زبان مدرک
فارسیچکیده
امروزه با پیشرفت تکنولوژی برای حل مسائلی که روابط دقیق ریاضی بین ورودی و خروجی برقرار نمی باشد از شبکه های عصبی مصنوعی استفاده می شود. در این پژوهش برای پیشبینی کشش سطحی مایعات یونی بر پایه ایمیدازولیوم دو شبکه عصبی پرسپترون چند لایه شامل شبکه عصبی مصنوعی پیشرو (FFANN) و شبکه عصبی آبشاری (CANN) پیشنهاد شد. برای بررسی صحت مدل ها، از 1251 داده آزمایشگاهی گردآوری شده از مقالات مختلف شامل کشش سطحی 40 مایع یونی در محدوده وسیع دمایی (از 61/263 الی 2/533 کلوین) استفاده شده است. نتایج نشان داد که مدل شبکه پرسپترون چند لایه CANN متشکل از چیدمانی با سه ورودی شامل جرم های مولکولی بخش های آنیونی و کاتیونی مایع یونی و دما و یک لایه مخفی حاوی 8 نرون با تابع فعال سازی تانژانت هیپربولیک که با استفاده از الگوریتم آموزشی لونبرگ-مارکوارت آموزش دیده بهترین دقت در پیش بینی کشش سطحی مایعات یونی داشته است. آنالیز خطا های دادههای تست با درصد متوسط قدر مطلق خطاهای نسبی (AARD%) 07/1، بیانگر کارایی مدل غیرخطی CANN در برقراری ارتباط مابین ورودی های شبکه و کششسطحی می باشد. علاوه بر آن مقایسه دقت مدل پیشنهادی با مدل های موجود از جمله قانون حالات متناظر، پاراچور، الگوریتم مدیریت داده ها به روش گروهی (GMDH) و مدل حداقل مربعات ماشین بردار پشتیبان (LSSVM) بیانگر برتری مدل پیشنهادی بوده است.
کلید واژگان
کشش سطحیمایعات یونی
مدلسازی
شبکه عصبی
جرم مولکولی
دما
مهندسی شیمی
شماره نشریه
58تاریخ نشر
2019-09-231398-07-01




