• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Scientia Iranica
    • Volume 16, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Scientia Iranica
    • Volume 16, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Predicting Density and Compressive Strength of Concrete Cement Paste Containing Silica Fume Using Arti cial Neural Networks

    (ندگان)پدیدآور
    Ketabchi, H.Ashoor, M.Rasa, E.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.954 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Abstract. Arti cial Neural Networks (ANNs) have recently been introduced as an e cient arti cial intelligence modeling technique for applications involving a large number of variables, especially with highly nonlinear and complex interactions among input/output variables in a system without any prior knowledge about the nature of these interactions. Various types of ANN models are developed and used for di erent problems. In this paper, an arti cial neural network of the feed-forward back-propagation type has been applied for the prediction of density and compressive strength properties of the cement paste portion of concrete mixtures. The mechanical properties of concrete are highly in uenced by the density and compressive strength of concrete cement paste. Due to the complex non-linear e ect of silica fume on concrete cement paste, the ANN model is used to predict density and compressive strength parameters. The density and compressive strength of concrete cement paste are a ected by several parameters, viz, watercementitious materials ratio, silica fume unit contents, percentage of super-plasticizer, curing, cement type, etc. The 28-day compressive strength and Saturated Surface Dry (SSD) density values are considered as the aim of the prediction. A total of 600 specimens were selected. The system was trained and validated using 350 training pairs chosen randomly from the data set and tested using the remaining 250 pairs. Results indicate that the density and compressive strength of concrete cement paste can be predicted much more accurately using the ANN method compared to existing conventional methods, such as traditional regression analysis, statistical methods, etc.
    کلید واژگان
    Cement paste
    compressive strength
    Density
    Neural network
    Silica Fume

    شماره نشریه
    1
    تاریخ نشر
    2009-02-01
    1387-11-13
    ناشر
    Sharif University of Technology
    سازمان پدید آورنده
    Department of Civil Engineering,Sharif University of Technology
    Department of Civil Engineering,Iran University of Science and Technology
    Department of Civil and Environmental Engineering,University of California

    شاپا
    1026-3098
    2345-3605
    URI
    http://scientiairanica.sharif.edu/article_3173.html
    https://iranjournals.nlai.ir/handle/123456789/120790

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب