• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Scientia Iranica
    • Volume 17, Issue 5
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Scientia Iranica
    • Volume 17, Issue 5
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Prediction of Longitudinal Dispersion Coefficient in Natural Channels Using Soft Computing Techniques

    (ندگان)پدیدآور
    Adarsh, S.
    Thumbnail
    نوع مدرک
    Text
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Accurate estimate of longitudinal dispersion coefficient is essential in many hydraulic and environmental problems such as intake designs, modeling ow in esturies and risk assessment of injection of hazardous pollutants into river ows. Recent research works show that in the absence of knowledge about explicit relationships concerning longitudinal dispersion coefficient and its in uencing parameters, data driven techniques can be used to predict it with reasonable degree of accuracy. In this paper, the usefulness of Support Vector Machines (SVM) and Genetic Programming (GP) are examined for predicting longitudinal dispersion coefficient in natural channels. The hydraulic variables such as ow depth (H), ow velocity (U) and shear velocity (u ) along with the width of channel (B) are used as input variables to predict longitudinal dispersion coefficient (Kx). The performance evaluation based on multiple error criteria confirm that GP shows remarkably good performance in capturing non-linear relationship between the predictors and predictant in the estimation of longitudinal dispersion coefficient when compared with empirical approaches, the traditional Artificial Neural Networks (ANN) and SVM. Hence GP can be used as an eficient computational paradigm in the prediction of longitudinal dispersion coeficient in natural channels.
    کلید واژگان
    Longitudinal dispersion coefficient
    Natural channels
    Artificial Neural Networks
    support vector machines
    Genetic programming

    شماره نشریه
    5
    تاریخ نشر
    2010-10-01
    1389-07-09
    ناشر
    Sharif University of Technology
    سازمان پدید آورنده
    Department of Civil Engineering,Santa Cruz

    شاپا
    1026-3098
    2345-3605
    URI
    http://scientiairanica.sharif.edu/article_3157.html
    https://iranjournals.nlai.ir/handle/123456789/120774

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب