• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Scientia Iranica
    • Volume 26, Issue 6
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Scientia Iranica
    • Volume 26, Issue 6
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Prediction of critical fraction of solid in low-pressure die casting of aluminum alloys using artificial neural network

    (ندگان)پدیدآور
    Teke, CagatayColak, MuratKiraz, AlperIpek, Mumtaz
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    2.272 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Casting simulation programs are the computer programs that digitally model the casting of an alloy in the sand, shell or permanent mold and then the cooling and solidification processes. However, obtaining consistent results from the casting modeling depends on providing many parameters and boundary conditions accurately. Critical fraction of solid (CFS), which is one of the most important of these parameters, is defined as the point where the solid dendrites do not allow any flow of the liquid metal in the mushy zone. Since the CFS value varies depending on many factors, inconsistent results can be experienced in the modeling applications. In this study, the CFS value obtained during the solidification of various commercial aluminum alloys' casting process carried out using low pressure die casting method, is predicted by using artificial neural network (ANN) method based on alloy type, grain refiner and modifier additions, initial mold temperature, pressure level parameters. In the scope of the study, 162 experiments are conducted. The results obtained from the low pressure die casting experiments using a special model designed for the study are validated by using SOLIDCast casting simulation. The CFS values obtained from this validation range from 33% to 61%.
    کلید واژگان
    Critical fraction of solid
    artificial neural network
    low pressure die casting
    casting simulation
    Multi-disciplinary optimization

    شماره نشریه
    6
    تاریخ نشر
    2019-12-01
    1398-09-10
    ناشر
    Sharif University of Technology
    سازمان پدید آورنده
    Institute of Natural Sciences, Sakarya University, Sakarya, Turkey
    Mechanical Engineering Department, Bayburt University, Bayburt, Turkey
    Industrial Engineering, Engineering Faculty, Sakarya University, Sakarya, Turkey
    Industrial Engineering Department, Sakarya University, Sakarya, Turkey

    شاپا
    1026-3098
    2345-3605
    URI
    https://dx.doi.org/10.24200/sci.2019.50819.1881
    http://scientiairanica.sharif.edu/article_21225.html
    https://iranjournals.nlai.ir/handle/123456789/119965

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب