نمایش مختصر رکورد

dc.contributor.authorMonjezi, M.en_US
dc.contributor.authorSaidi, M.S.en_US
dc.date.accessioned1399-07-08T21:50:38Zfa_IR
dc.date.accessioned2020-09-29T21:50:38Z
dc.date.available1399-07-08T21:50:38Zfa_IR
dc.date.available2020-09-29T21:50:38Z
dc.date.issued2016-08-01en_US
dc.date.issued1395-05-11fa_IR
dc.date.submitted2016-08-27en_US
dc.date.submitted1395-06-06fa_IR
dc.identifier.citationMonjezi, M., Saidi, M.S.. (2016). Fluid-structure interaction analysis of air flow in pulmonary alveoli during normal breathing in healthy humans. Scientia Iranica, 23(4), 1826-1836. doi: 10.24200/sci.2016.3929en_US
dc.identifier.issn1026-3098
dc.identifier.issn2345-3605
dc.identifier.urihttps://dx.doi.org/10.24200/sci.2016.3929
dc.identifier.urihttp://scientiairanica.sharif.edu/article_3929.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/119270
dc.description.abstractIn this work, the human lung alveoli are idealized by a three dimensional honeycomb like geometry and a fluid-structure analysis is performed to study the normal breathing mechanics. In contrast to previous works in which the inlet flow rate is prede ned, in this model, we have applied a negative pressure on the outside surface of the alveolus which causes air to flow in and out of the alveolus. The integration of the experimental curve of breathing flow rate was used to approximate the shape of the external applied pressure. Our Fluid-Structure Interaction (FSI) model has an advantage over other literature since it addresses both the fluid dynamics and solid mechanics, simultaneously. The flow patterns con rmed that there is no circulation in the terminal alveolus. We have applied three distinct material models { linear isotropic elastic, hyperelastic, and viscoelastic  in order to simulate the mechanical behavior of alveolar wall tissue using ADINA software. The hysteresis behavior of the alveolar tissue was well predicted by a compliance diagram of the viscoelastic model while this behavior is not observed in the linear elastic and hyperelastic model. The stress and strain distribution is also obtained and is found to be non-uniform.en_US
dc.languageEnglish
dc.language.isoen_US
dc.publisherSharif University of Technologyen_US
dc.relation.ispartofScientia Iranicaen_US
dc.relation.isversionofhttps://dx.doi.org/10.24200/sci.2016.3929
dc.subjectFSIen_US
dc.subjectAlveolar wallen_US
dc.subjectViscoelasticen_US
dc.subjectStream lineen_US
dc.subjectStressen_US
dc.subjectstrainen_US
dc.titleFluid-structure interaction analysis of air flow in pulmonary alveoli during normal breathing in healthy humansen_US
dc.typeTexten_US
dc.contributor.departmentSchool of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.en_US
dc.contributor.departmentSchool of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.en_US
dc.citation.volume23
dc.citation.issue4
dc.citation.spage1826
dc.citation.epage1836


فایل‌های این مورد

فایل‌هااندازهقالبمشاهده

فایلی با این مورد مرتبط نشده است.

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد