نمایش مختصر رکورد

dc.contributor.authorTahmoresnezhad, J.en_US
dc.contributor.authorHashemi, S.en_US
dc.date.accessioned1399-07-08T21:49:52Zfa_IR
dc.date.accessioned2020-09-29T21:49:52Z
dc.date.available1399-07-08T21:49:52Zfa_IR
dc.date.available2020-09-29T21:49:52Z
dc.date.issued2017-06-01en_US
dc.date.issued1396-03-11fa_IR
dc.date.submitted2015-02-23en_US
dc.date.submitted1393-12-04fa_IR
dc.identifier.citationTahmoresnezhad, J., Hashemi, S.. (2017). DiReT: An effective discriminative dimensionality reduction approach for multi-source transfer learning. Scientia Iranica, 24(3), 1303-1311. doi: 10.24200/sci.2017.4113en_US
dc.identifier.issn1026-3098
dc.identifier.issn2345-3605
dc.identifier.urihttps://dx.doi.org/10.24200/sci.2017.4113
dc.identifier.urihttp://scientiairanica.sharif.edu/article_4113.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/118988
dc.description.abstractTransfer learning is a well-known solution to the problem of domain shift in which source domain (training set) and target domain (test set) are drawn from di fferent distributions. In the absence of domain shift, discriminative dimensionality reduction approaches could classify target data with acceptable accuracy. However, distribution diff erence across source and target domains degrades the performance of dimensionalityreduction methods. In this paper, we propose a Discriminative Dimensionality Reduction approach for multi-source Transfer learning, DiReT, in which discrimination is exploited on transferred data. DiReT nds an embedded space, such that the distribution di erenceof the source and target domains is minimized. Moreover, DiReT employs multiple sourcedomains and semi-supervised target domain to transfer knowledge from multiple resources,and it also bridges across source and target domains to nd common knowledge in anembedded space. Empirical evidence of real and arti cial datasets indicates that DiReTmanages to improve substantially over dimensionality reduction approaches.en_US
dc.format.extent2958
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherSharif University of Technologyen_US
dc.relation.ispartofScientia Iranicaen_US
dc.relation.isversionofhttps://dx.doi.org/10.24200/sci.2017.4113
dc.subjectMulti-source transfer learningen_US
dc.subjectDomain adaptationen_US
dc.subjectDiscriminative dimensionality reductionen_US
dc.subjectFisher discriminant analysisen_US
dc.subjectComputer Engineeringen_US
dc.titleDiReT: An effective discriminative dimensionality reduction approach for multi-source transfer learningen_US
dc.typeTexten_US
dc.typeArticleen_US
dc.contributor.departmentFaculty of IT & Computer Engineering, Urmia University of Technology, Urmia, Iranen_US
dc.contributor.departmentSchool of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran.en_US
dc.citation.volume24
dc.citation.issue3
dc.citation.spage1303
dc.citation.epage1311


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد