• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Scientia Iranica
    • Volume 24, Issue 3
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Scientia Iranica
    • Volume 24, Issue 3
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    DiReT: An effective discriminative dimensionality reduction approach for multi-source transfer learning

    (ندگان)پدیدآور
    Tahmoresnezhad, J.Hashemi, S.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    2.889 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Transfer learning is a well-known solution to the problem of domain shift in which source domain (training set) and target domain (test set) are drawn from di fferent distributions. In the absence of domain shift, discriminative dimensionality reduction approaches could classify target data with acceptable accuracy. However, distribution diff erence across source and target domains degrades the performance of dimensionalityreduction methods. In this paper, we propose a Discriminative Dimensionality Reduction approach for multi-source Transfer learning, DiReT, in which discrimination is exploited on transferred data. DiReT nds an embedded space, such that the distribution di erenceof the source and target domains is minimized. Moreover, DiReT employs multiple sourcedomains and semi-supervised target domain to transfer knowledge from multiple resources,and it also bridges across source and target domains to nd common knowledge in anembedded space. Empirical evidence of real and arti cial datasets indicates that DiReTmanages to improve substantially over dimensionality reduction approaches.
    کلید واژگان
    Multi-source transfer learning
    Domain adaptation
    Discriminative dimensionality reduction
    Fisher discriminant analysis
    Computer Engineering

    شماره نشریه
    3
    تاریخ نشر
    2017-06-01
    1396-03-11
    ناشر
    Sharif University of Technology
    سازمان پدید آورنده
    Faculty of IT & Computer Engineering, Urmia University of Technology, Urmia, Iran
    School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran.

    شاپا
    1026-3098
    2345-3605
    URI
    https://dx.doi.org/10.24200/sci.2017.4113
    http://scientiairanica.sharif.edu/article_4113.html
    https://iranjournals.nlai.ir/handle/123456789/118988

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب